On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 547-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria are established for linear independence of Keldysh derived chains constructed from the root vectors of functions analytic in the left half-plane with values in the set of operators acting in a Hilbert space $\mathfrak H$. In particular, an operator-valued function $L(\lambda)=L_0+\lambda L_1+\dots+\lambda^nL_n$ is considered. Let $\operatorname{Im}L(i\tau)\geqslant0$ for $\tau\in\mathbf R$ and suppose that zero does not belong to the numerical range of the operator $L(i\tau_0)$ for some $\tau_0\in\mathbf R$. Denote by $x_\mu$ an eigenvector $L(\tau)$ corresponding to an eigenvalue $\mu$, and by $M$ the subset of eigenvalues $\mu$ for which $\operatorname{Re}\mu<0$ and $i(L'(\mu)x_\mu,x_\mu)<0$ for $\operatorname{Re}\mu=0$. Then it is proved that the vectors $\widetilde y_\mu=\{x_\mu,\mu x_\mu,\dots,\mu^{m-1}x_\mu\}$ that belong to the direct sum of $m$ copies of the space $\mathfrak H$ are linearly independent when $\mu\in M$ while $m\geqslant[(n+1)/2]$. If, moreover, the operator $(i)^nL_n\geqslant0$, then this assertion holds also for $m=[n/2]$. A connection is exhibited between the results obtained here and the question of uniqueness of the solution of a problem on the half-line for systems of ordinary differential equations with constant coefficients. Bibliography: 7 titles.
@article{SM_1988_60_2_a18,
     author = {G. V. Radzievskii},
     title = {On the linear independence of the {Keldysh} derived chains for operator-valued functions analytic in a~half-plane},
     journal = {Sbornik. Mathematics},
     pages = {547--567},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a18/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 547
EP  - 567
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a18/
LA  - en
ID  - SM_1988_60_2_a18
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane
%J Sbornik. Mathematics
%D 1988
%P 547-567
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a18/
%G en
%F SM_1988_60_2_a18
G. V. Radzievskii. On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 547-567. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a18/

[1] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[2] Radzievskii G. V., “Zadacha o polnote kornevykh vektorov v spektralnoi teorii operator-funktsii”, UMN, 37:2 (1982), 81–145 | MR | Zbl

[3] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965 | MR | Zbl

[4] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[5] Radzievskii G. V., “Kratnaya polnota kornevykh vektorov puchka M. V. Keldysha, vozmuschennogo analiticheskoi v kruge operator-funktsiei”, Matem. sb., 91(133) (1973), 310–335 | MR | Zbl

[6] Mogulskii E. Z., “Teorema polnoty sistemy sobstvennykh i prisoedinennykh vektorov ratsionalnogo puchka operatorov”, Izv. AN Arm SSR. Ser. matem., 3:6 (1968), 427–442 | MR

[7] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR