Synthesis of optimal trajectories on representation spaces of Lie groups
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 533-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a representation space of a Lie group $G$, $\omega$ a differential form of the first degree on $X$ and $K(x)$ a field of closed convex cones on $X$. Problem 1 is the minimization of the integral of the differential form $\omega$ along curves which satisfy certain boundary conditions and are solutions of the differential inclusion $\dot x(t)\in K(x(t))$. This problem is assumed to be equivariant in the sense that the field of cones $K(x)$ and the differential form $\omega$ are invariant under the action of $G$. For Problem 1 the author introduces the concept of a totally extremal manifold, which is an analogue of the concept of a totally geodesic manifold in a Riemannian or Finsler space. Some theorems are proved on totally extremal manifolds for fundamental representations of Lie groups. These theorems are used along with techniques developed in previous papers by the author to construct a synthesis of optimal trajectories for some multidimensional equivariant problems. Figures: 4. Bibliography: 13 titles.
@article{SM_1988_60_2_a17,
     author = {M. I. Zelikin},
     title = {Synthesis of optimal trajectories on representation spaces of {Lie} groups},
     journal = {Sbornik. Mathematics},
     pages = {533--546},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a17/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Synthesis of optimal trajectories on representation spaces of Lie groups
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 533
EP  - 546
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a17/
LA  - en
ID  - SM_1988_60_2_a17
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Synthesis of optimal trajectories on representation spaces of Lie groups
%J Sbornik. Mathematics
%D 1988
%P 533-546
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a17/
%G en
%F SM_1988_60_2_a17
M. I. Zelikin. Synthesis of optimal trajectories on representation spaces of Lie groups. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 533-546. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a17/

[1] Zelikin M. I., “Neobkhodimye usloviya optimalnosti traektorii v lineinykh po upravleniyu zadachakh”, Nekotorye voprosy sovremennogo analiza, MGU, M., 1984, 35–41 | MR

[2] Luscher M., Mack G., “Global conformal invariance in quantum field theory”, Commun. math. phys., 41 (1975), 203–234 | DOI | MR

[3] Segal I. E., Mathematical cosmology and extragalactic astronomy, Academic press, 1976 | MR

[4] Arnold V. I., “Ustoichivye kolebaniya s garmonicheskoi po prostranstvu i periodicheskoi po vremeni potentsialnoi energiei”, PMM, 2 (1979), 360–363 | MR

[5] Vinberg E. B., “Invariantnye vypuklye konusy i uporyadocheniya v gruppakh Li”, Funktsion. analiz i ego pril., 14:1 (1980), 1–13 | MR | Zbl

[6] Paneitz S. M., “Invariant convex cones and causality in semisimple Lie algebras and groups”, J. Funct. Analysis., 43:3 (1981), 313–359 | DOI | MR | Zbl

[7] Olshanskii G. I., “Vypuklye konusy v simmetricheskikh algebrakh Li i invariantnye prichinnye struktury (uporyadocheniya) na psevdorimanovykh simmetricheskikh prostranstvakh”, DAN SSSR, 265:3 (1982), 537–541 | MR

[8] Zelikin M. I., “On the singular arcs”, Problem of control and information theory, 14:2 (1985), 75–88 | MR | Zbl

[9] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[10] Shevalle K., Teoriya grupp Li, T. 1, IL, M., 1948.

[11] Zelikina L. F., “Mnogomernyi sintez i teoremy o magistrali v zadachakh optimalnogo upravleniya”, Veroyatnostnye problemy upravleniya v ekonomike, Nauka, M., 1977, 33–114 | MR

[12] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[13] Uells R. O., “Kompleksnye mnogoobraziya i matematicheskaya fizika”, Tvistory i kalibrovochnye polya, Mir, M., 1983, 28–77 | MR