On Liouville theorems for harmonic functions with finite Dirichlet integral
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 485-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for the validity of the $D$-Liouville theorem is proved. In § 1 it is shown that the question of $L^\infty$ and $D$-Liouville theorems reduces to the study of the so-called massive sets (in other words, the level sets of harmonic functions in the classes $L^\infty$ and $L^\infty\cap D$). In § 2 some properties of capacity are presented. In § 3 the criterion of $D$-massiveness is formulated – the central result of this article – and examples are presented. In § 4 a criterion for the $D$-Liouville theorem is formulated, and corollaries are derived. §§ 5–9 the main theorems are proved. Figures: 5. Bibliography: 17 titles.
@article{SM_1988_60_2_a14,
     author = {A. A. Grigor'yan},
     title = {On {Liouville} theorems for harmonic functions with finite {Dirichlet} integral},
     journal = {Sbornik. Mathematics},
     pages = {485--504},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a14/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
TI  - On Liouville theorems for harmonic functions with finite Dirichlet integral
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 485
EP  - 504
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a14/
LA  - en
ID  - SM_1988_60_2_a14
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%T On Liouville theorems for harmonic functions with finite Dirichlet integral
%J Sbornik. Mathematics
%D 1988
%P 485-504
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a14/
%G en
%F SM_1988_60_2_a14
A. A. Grigor'yan. On Liouville theorems for harmonic functions with finite Dirichlet integral. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 485-504. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a14/

[1] Moser J., “On Harnack's theorem for elliptic differential equations”, Comm. Pure and Appl. Math., 14:3 (1961), 577–591 | DOI | MR | Zbl

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[3] Yau S. T., “Some function theoretic properties of complete Riemannian manifolds and their applications to geometry”, Indiana Univ. Math. J., 25 (1976), 659–670 | DOI | MR | Zbl

[4] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154) (1980), 588–610 | MR | Zbl

[5] Sario L., Nakai M., Wang C., Chung L. O., “Classification theory of Riemannian manifolds”, Lecture Notes Math., 605, 1977 | MR | Zbl

[6] Kuzmenko Yu. T., Molchanov S. A., “Kontrprimery k teoremam Liuvilleva tipa”, Vestn. MGU. Ser. 1. Matem. mekh., 1979, no. 6, 39–43 | MR

[7] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na mnogoobrazii”, UMN, 37:3 (1982), 181–182 | MR

[8] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na rimanovom mnogoobrazii”, Tr. Tbil. un-ta. Ser. matem., 232–233:13–14 (1982), 49–76 | MR

[9] Minakhin V. V., “O teoreme Liuvillya i neravenstve Kharnaka dlya uravneniya Beltrami na proizvolnom mnogoobrazii”, Funktsion. analiz i ego pril., 14:2 (1980), 71–72 | MR | Zbl

[10] Bombieri E., Giusti E., “Harnack's inequality for elliptic differential equations on minimal surfaces”, Invent. Math., 15 (1972), 24–46 | DOI | MR | Zbl

[11] Yau S. T., “Harmonic functions on complete Riemannian manifolds”, Comm. Pure and Appl. Math., 28:2 (1975), 201–228 | DOI | MR | Zbl

[12] Grigoryan A. A., “O suschestvovanii polozhitelnykh fundamentalnykh reshenii uravneniya Laplasa na rimanovykh mnogoobraziyakh”, Matem. sb., 128(170) (1985), 354–363 | MR

[13] Yau S. T., “Isoperimetric constans and the first eigenvalue of a compact Reimannian manifold”, Ann. Sci. Ecole Norm. Sup. Ser. IV, 8:4 (1975), 487–507 | MR | Zbl

[14] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR

[15] Littman W., Stampecchia C., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa, 17:1–2 (1963), 43–47 | MR

[16] Gerver M. L., Landis E. M., “Odno obobschenie teoremy o srednem dlya funktsii mnogikh peremennykh”, DAN SSSR, 146:4 (1962), 761–764 | MR | Zbl

[17] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR