Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of equations $$ \partial_tU+A(U)\partial_xU+B(U)U=0,\qquad x\in\mathbf{R}^1,\quad t>0\quad (U\in\mathbf R^m), $$ is considered with initial data in the form of a wave packet of small amplitude $$ U_{t=0}=\varepsilon\sum_{k=\pm1}\Phi_k(\xi)\exp(ikx),\quad \xi =\varepsilon x\quad(\Phi _k(\xi )=O((1+|\xi |)^{-N})\ \forall N). $$ The asymptotics of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in the strip $x\in\mathbf R^1$, $0\leqslant t\leqslant O(\varepsilon^{-2})$, is constructed by the method of multiscale expansions. The coefficients of the asymptotics are a system of wave packets traveling with group velocities; the leading term is determined from a system of nonlinear equations of Schrödinger type. Bibliography: 32 titles.
@article{SM_1988_60_2_a13,
     author = {L. A. Kalyakin},
     title = {Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium},
     journal = {Sbornik. Mathematics},
     pages = {457--483},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 457
EP  - 483
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/
LA  - en
ID  - SM_1988_60_2_a13
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium
%J Sbornik. Mathematics
%D 1988
%P 457-483
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/
%G en
%F SM_1988_60_2_a13
L. A. Kalyakin. Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[2] Naife A., Metody vozmuschenii, Mir, M., 1976 | MR

[3] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[4] Bkhatnagar P., Nelineinye volny v odnomernykh dispersnykh sistemakh, Mir, M., 1983 | MR | Zbl

[5] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984 | Zbl

[6] Gaponov A. V., Ostrovskii L. A., Rabinovich M. I., “Odnomernye volny v nelineinykh dispergiruyuschikh sredakh”, Izv. VUZov. Radiofizika, 13 (1970), 163–213

[7] Ostrovskii L. A., “Priblizhennye metody v teorii nelineinykh voln”, Izv. VUZov. Radiofizika, 13:4 (1974), 454–476 | MR

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976

[9] Vakulenko S. A., “Obosnovanie asimptoticheskikh formul dlya uravneniya Kleina–Foka–Gordona s vozmuscheniem”, Zap. nauch. seminarov LOMI, 104 (1981), 84–92 | MR | Zbl

[10] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[11] Rabinovich M. I., “Ob asimptoticheskom metode v teorii nelineinykh kolebanii raspredelennykh sistem”, DAN SSSR, 191:6 (1970), 1253–1256 | MR

[12] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976

[13] Shtaras A. L., “Asimptoticheskoe integrirovanie slabonelineinykh uravnenii s chastnymi proizvodnymi”, DAN SSSR, 237:3 (1977), 525–528 | MR | Zbl

[14] Kalyakin L. A., “Dlinnovolnovaya asimptotika resheniya giperbolicheskoi sistemy uravnenii”, Matem. sb., 124(166) (1984), 96–120 | MR | Zbl

[15] Taniuti T., “Reductive perturbation method and far fields of wave equation”, Suppl. of Progress of theoretical physics, 55 (1974), 1–35 | DOI

[16] Asano N., “Wave propagations in non-uniform media”, Suppl. of Progress of theoretical physics, 55 (1974), 52–79 | DOI | MR

[17] Kako M., “Nonlinear modulation of plasma vaves”, Suppl. of Progress of theoretical physics, 55 (1974), 120–137 | DOI

[18] Karpman V. I., Krushkal E. M., “O modulirovannykh volnakh v nelineinykh dispergiruyuschikh sredakh”, ZhETF, 55:2 (1968), 530–538

[19] Kato T., “Blow-up of solution of some nonlinear hyperbolic equation”, Comm. pure. appl. math., 33:4 (1980), 501–506 | DOI | MR

[20] Cheng Kuo-Shung, “Formation of sigularities for nonlinear hyperbolic partial differential equation”, Contemp. Math., 17 (1983), 45–56 | MR | Zbl

[21] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980 | MR

[22] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[23] Montgomery D., Tidman D. A., “Secular and nonsecular behavior for cold plasma equation”, Fhys. Fluids., 7 (1964), 242–249 | DOI | MR | Zbl

[24] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[25] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkale banakhovykh prostranstv”, DAN SSSR, 200:4 (1971), 789–792 | Zbl

[26] Kalyakin L. A., “Postroenie asimptoticheskogo razlozheniya resheniya giperbolicheskogo uravneniya so slabo nelineinym vozmuscheniem”, Differents. uravneniya, XIX:11 (1983), 1991–1992

[27] Laricheva V. V., “O rasshirenii intervala primenimosti osredneniya”, DAN SSSR, 220:4, 775–778 | Zbl

[28] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[29] Maslov V. P., Resonance processes in the wave theory and self-focalization, MIEM, Moscow, 1984, 120 pp.

[30] Jeffrey A., Kawahara T., “Asymptotic methods in nonlinear wave theory”, Pitman Advanced Pabl. Progr., 1982, 256 pp. | MR

[31] Bullaf R., Kodri F., Solitony, Mir, M., 1983

[32] L. V. Ovsyannikov, V. N. Monakhov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985