Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of equations $$ \partial_tU+A(U)\partial_xU+B(U)U=0,\qquad x\in\mathbf{R}^1,\quad t>0\quad (U\in\mathbf R^m), $$ is considered with initial data in the form of a wave packet of small amplitude $$ U_{t=0}=\varepsilon\sum_{k=\pm1}\Phi_k(\xi)\exp(ikx),\quad \xi =\varepsilon x\quad(\Phi _k(\xi )=O((1+|\xi |)^{-N})\ \forall N). $$ The asymptotics of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in the strip $x\in\mathbf R^1$, $0\leqslant t\leqslant O(\varepsilon^{-2})$, is constructed by the method of multiscale expansions. The coefficients of the asymptotics are a system of wave packets traveling with group velocities; the leading term is determined from a system of nonlinear equations of Schrödinger type. Bibliography: 32 titles.
@article{SM_1988_60_2_a13,
     author = {L. A. Kalyakin},
     title = {Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium},
     journal = {Sbornik. Mathematics},
     pages = {457--483},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 457
EP  - 483
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/
LA  - en
ID  - SM_1988_60_2_a13
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium
%J Sbornik. Mathematics
%D 1988
%P 457-483
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/
%G en
%F SM_1988_60_2_a13
L. A. Kalyakin. Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/