Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483
Voir la notice de l'article provenant de la source Math-Net.Ru
The system of equations
$$
\partial_tU+A(U)\partial_xU+B(U)U=0,\qquad x\in\mathbf{R}^1,\quad t>0\quad
(U\in\mathbf R^m),
$$
is considered with initial data in the form of a wave packet of small amplitude
$$
U_{t=0}=\varepsilon\sum_{k=\pm1}\Phi_k(\xi)\exp(ikx),\quad
\xi =\varepsilon x\quad(\Phi _k(\xi )=O((1+|\xi |)^{-N})\ \forall N).
$$
The asymptotics of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in the strip $x\in\mathbf R^1$, $0\leqslant t\leqslant O(\varepsilon^{-2})$, is constructed by the method of multiscale expansions. The coefficients of the asymptotics are a system of wave packets traveling with group velocities; the leading term is determined from a system of nonlinear equations of Schrödinger type.
Bibliography: 32 titles.
@article{SM_1988_60_2_a13,
author = {L. A. Kalyakin},
title = {Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium},
journal = {Sbornik. Mathematics},
pages = {457--483},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/}
}
L. A. Kalyakin. Asymptotic decay of a~one-dimensional wave packet in a~nonlinear dispersive medium. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 457-483. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a13/