@article{SM_1988_60_2_a12,
author = {V. G. Maz'ya and M. G. Sulimov},
title = {Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients},
journal = {Sbornik. Mathematics},
pages = {437--455},
year = {1988},
volume = {60},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/}
}
TY - JOUR AU - V. G. Maz'ya AU - M. G. Sulimov TI - Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients JO - Sbornik. Mathematics PY - 1988 SP - 437 EP - 455 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/ LA - en ID - SM_1988_60_2_a12 ER -
V. G. Maz'ya; M. G. Sulimov. Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 437-455. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/
[1] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1973 | Zbl
[2] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl
[3] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1967), 209–292
[4] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v konuse”, Zap. nauchn. seminarov LOMI, 52 (1975), 110–127
[5] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR
[6] Markus A. S., “O golomorfnykh operator-funktsiyakh”, DAN SSSR, 119:6 (1958), 1099–1102 | MR | Zbl
[7] Trofimov V. P., “O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra”, Matem. issledovaniya, 3:3 (1968), 117–125 | MR | Zbl
[8] Markus A. S, Sigal E. I., “O kratnosti kharakteristicheskogo chisla analiticheskoi operator-funktsii”, Matem. issledovaniya, 5:3 (1970), 129–147 | MR | Zbl
[9] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl