Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 437-455
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors study equations of the form
$$
\sum_{k\geqslant0}A_ku_{n-k}=f_n,\qquad n=0,\pm1,\dots,
$$
where the $u_n$ and $f_n$ are elements in some Hilbert space $H$, and the $A_k$ are bounded linear operators on $H$. It is assumed that the corresponding operator symbol
$$
L(\lambda )=\sum_{k\geqslant0}A_k\lambda^k
$$
is a holomorphic Fredholm operator-valued function which is normal in some neighborhood of zero.
Bibliography: 9 titles.
@article{SM_1988_60_2_a12,
author = {V. G. Maz'ya and M. G. Sulimov},
title = {Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients},
journal = {Sbornik. Mathematics},
pages = {437--455},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/}
}
TY - JOUR AU - V. G. Maz'ya AU - M. G. Sulimov TI - Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients JO - Sbornik. Mathematics PY - 1988 SP - 437 EP - 455 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/ LA - en ID - SM_1988_60_2_a12 ER -
V. G. Maz'ya; M. G. Sulimov. Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 437-455. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/