Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 437-455

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors study equations of the form $$ \sum_{k\geqslant0}A_ku_{n-k}=f_n,\qquad n=0,\pm1,\dots, $$ where the $u_n$ and $f_n$ are elements in some Hilbert space $H$, and the $A_k$ are bounded linear operators on $H$. It is assumed that the corresponding operator symbol $$ L(\lambda )=\sum_{k\geqslant0}A_k\lambda^k $$ is a holomorphic Fredholm operator-valued function which is normal in some neighborhood of zero. Bibliography: 9 titles.
@article{SM_1988_60_2_a12,
     author = {V. G. Maz'ya and M. G. Sulimov},
     title = {Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients},
     journal = {Sbornik. Mathematics},
     pages = {437--455},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - M. G. Sulimov
TI  - Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 437
EP  - 455
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/
LA  - en
ID  - SM_1988_60_2_a12
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A M. G. Sulimov
%T Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients
%J Sbornik. Mathematics
%D 1988
%P 437-455
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/
%G en
%F SM_1988_60_2_a12
V. G. Maz'ya; M. G. Sulimov. Asymptotics of solutions of one-dimensional difference equations with constant operator coefficients. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 437-455. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a12/