On~functions of bounded variation that are determined by restriction to a~semiaxi
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 427-436

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F(x)$, $x\in\mathbf R$, be a function of bounded variation on the line. This paper investigates whether convolutions of the form $F(x/a_1)*\dots*F(x/a_n)$, $n\geqslant2$, are uniquely determined from their values on the semiaxis $x\in(-\infty,0)$. As a corollary to one of the results a conjecture of Kruglov is proved: if $F(x)$ is a distribution function, $\Phi (x)$ is the standard normal distribution function, and $a_1>0,\dots,a_n>0$, $n\geqslant2$, then the equality $$ F\biggl(\frac x{a_1}\biggr)*\dots*F\biggl(\frac x{a_n}\biggr)=\Phi(x),\qquad x\in(-\infty,0), $$ implies that $F(x)\equiv\Phi((a^2_1+\dots+a^2_n)^{1/2}x)$. Bibliography: 10 titles.
@article{SM_1988_60_2_a11,
     author = {A. M. Ulanovskii},
     title = {On~functions of bounded variation that are determined by restriction to a~semiaxi},
     journal = {Sbornik. Mathematics},
     pages = {427--436},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/}
}
TY  - JOUR
AU  - A. M. Ulanovskii
TI  - On~functions of bounded variation that are determined by restriction to a~semiaxi
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 427
EP  - 436
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/
LA  - en
ID  - SM_1988_60_2_a11
ER  - 
%0 Journal Article
%A A. M. Ulanovskii
%T On~functions of bounded variation that are determined by restriction to a~semiaxi
%J Sbornik. Mathematics
%D 1988
%P 427-436
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/
%G en
%F SM_1988_60_2_a11
A. M. Ulanovskii. On~functions of bounded variation that are determined by restriction to a~semiaxi. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 427-436. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/