@article{SM_1988_60_2_a11,
author = {A. M. Ulanovskii},
title = {On~functions of bounded variation that are determined by restriction to a~semiaxi},
journal = {Sbornik. Mathematics},
pages = {427--436},
year = {1988},
volume = {60},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/}
}
A. M. Ulanovskii. On functions of bounded variation that are determined by restriction to a semiaxi. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 427-436. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a11/
[1] Rossberg H.-J., “On a problem of Kolmogorov concerning the normal distribution”, Teoriya veroyatnostei i ee primeneniya, 19:4 (1974), 795–798 | MR | Zbl
[2] Riedel M. N., “On the one-sided tails of infinitely divisible distributions”, Math. Nachr., 70 (1975), 155–163 | DOI | MR | Zbl
[3] Ibragimov I. A., “Ob opredelenii bezgranichno delimoi funktsii raspredeleniya po ee znacheniyam na polupryamoi”, Teoriya veroyatnostei i ee primeneniya, 22:2 (1977), 393–399 | Zbl
[4] Titov A. N., “Ob opredelenii svertki odinakovykh funktsii raspredeleniya po ee znacheniyam na polupryamoi”, Teoriya veroyatnostei i ee primeneniya, 26:3 (1981), 610–611 | MR | Zbl
[5] Blank N. M., “O raspredeleniyakh, svertki kotorykh sovpadayut na poluosi”, Teoriya funktsii, funktsion. analiz i ikh pril., 41, Kharkov, 1984, 17–25 | MR | Zbl
[6] Ostrovskii I. V., “Ob odnom klasse funktsii ogranichennoi variatsii na pryamoi, opredelyaemykh svoimi znacheniyami na polupryamoi”, Zap. nauchn. seminarov LOMI, 92, 1979, 220–229 | MR | Zbl
[7] Ostrovskii I. V., “Generalization of the Titchmarsh convolution theorem and the complex-valued measures uniquely determined by their restriction to a half-line”, Lecture Notes in Math., 1155, 1985, 256–284 | MR
[8] Gordon A. Ya., Levin B. Ya., “O delenii kvazipolinomov”, Funktsion. analiz i ego pril., 5:1 (1971), 22–29 | MR | Zbl
[9] Ronkin A. L., “O neprivodimosti kvazipolinomov”, Teoriya funktsii, funktsion. analiz i ikh pril., 39, Kharkov, 1983, 106–110 | MR | Zbl
[10] Linnik Yu. V., Ostrovskii I. V., Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972 | MR