On homological dimension modulo $p$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article provides a construction of an infinite-dimensional compact space of dimension 2 modulo $p$ for any $p$. A characterization of compact spaces $n$-dimensional modulo $p$ in terms of inverse spectrum of polyhedra is given. It is proved that compact spaces $n$-dimensional modulo $p$, and only these spaces, are images of $n$-dimensional compact spaces under maps acyclic in the sense of cohomology with coefficients in $\mathbf Z_p$. Bibliography: 18 titles.
@article{SM_1988_60_2_a10,
     author = {A. N. Dranishnikov},
     title = {On~homological dimension modulo~$p$},
     journal = {Sbornik. Mathematics},
     pages = {413--425},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On homological dimension modulo $p$
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 413
EP  - 425
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/
LA  - en
ID  - SM_1988_60_2_a10
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On homological dimension modulo $p$
%J Sbornik. Mathematics
%D 1988
%P 413-425
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/
%G en
%F SM_1988_60_2_a10
A. N. Dranishnikov. On homological dimension modulo $p$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/

[1] Aleksandrov P. S., “Einige Problemstellungen in der mengentheoretischen Topologie”, Matem. sb., 1(43) (1936), 619–634 | Zbl

[2] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR

[3] Walsh J., “Dimension, cohomological dimension, and cell-like mappings”, Lect. Notes in Math., 870, 1981, 105–118 | MR | Zbl

[4] Dranishnikov A. N., Schepin E. V., “Kletochnopodobnye otobrazheniya. Problema povysheniya razmernosti”, UMN, 41:6 (1986), 49–90 | MR | Zbl

[5] Pontrjagin L. S., “Sur une hypothèse foundamentale de la dimension”, Compt. Rend. Acad. Sci., 190 (1930), 1105–1107 | Zbl

[6] Boltyanskii V. G., “O teoreme slozheniya razmernostei”, UMN, 6:3 (1951), 99–129 | MR

[7] Williams R. F., “A useful functor and three famous examples in topology”, Trans. Amer. Math. Soc., 106:2 (1963), 319–330 | DOI | MR

[8] Raymond F., Williams R. F., “Examples of $p$-adic transformation groups”, Ann. of Math., 78:1 (1963), 92–106 | DOI | MR | Zbl

[9] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[10] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[11] Bokshtein M. F., “O gomologicheskikh invariantakh topologicheskikh prostranstv I”, Tr. MMO, 5 (1956), 3–80

[12] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, UMN, 23:5 (1968), 3–49 | MR

[13] Aleksandrov P. S, Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1975

[14] Schepin E. V., “Konechnomernyi bikompaktnyi absolyutnyi okrestnostnyi retrakt metrizuem”, DAN SSSR, 233:3 (1977), 304–307 | MR | Zbl

[15] Brown M., “Some application of an approximation theorem for inverse limits”, Proc. Amer. Math. Soc., 11 (1960), 478–483 | DOI | MR | Zbl

[16] Bestvina M., Characterization $k$-dimensional universal Menger compacta, Dissertation on Ph. D., University of Tennessee, Knoxville, 1984

[17] Boltyanskii V. G., “O razmernoi polnotsennosti kompaktov”, DAN SSSR, 67:5 (1949), 773–777 | MR

[18] Dyer E., “On the dimension of products”, Fund. Math., 47:2 (1959), 141–160 | MR | Zbl