On~homological dimension modulo~$p$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425

Voir la notice de l'article provenant de la source Math-Net.Ru

The article provides a construction of an infinite-dimensional compact space of dimension 2 modulo $p$ for any $p$. A characterization of compact spaces $n$-dimensional modulo $p$ in terms of inverse spectrum of polyhedra is given. It is proved that compact spaces $n$-dimensional modulo $p$, and only these spaces, are images of $n$-dimensional compact spaces under maps acyclic in the sense of cohomology with coefficients in $\mathbf Z_p$. Bibliography: 18 titles.
@article{SM_1988_60_2_a10,
     author = {A. N. Dranishnikov},
     title = {On~homological dimension modulo~$p$},
     journal = {Sbornik. Mathematics},
     pages = {413--425},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On~homological dimension modulo~$p$
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 413
EP  - 425
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/
LA  - en
ID  - SM_1988_60_2_a10
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On~homological dimension modulo~$p$
%J Sbornik. Mathematics
%D 1988
%P 413-425
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/
%G en
%F SM_1988_60_2_a10
A. N. Dranishnikov. On~homological dimension modulo~$p$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/