On~homological dimension modulo~$p$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425
Voir la notice de l'article provenant de la source Math-Net.Ru
The article provides a construction of an infinite-dimensional compact space of dimension 2 modulo $p$ for any $p$. A characterization of compact spaces $n$-dimensional modulo $p$ in terms of inverse spectrum of polyhedra is given. It is proved that compact spaces $n$-dimensional modulo $p$, and only these spaces, are images of $n$-dimensional compact spaces under maps acyclic in the sense of cohomology with coefficients in $\mathbf Z_p$.
Bibliography: 18 titles.
@article{SM_1988_60_2_a10,
author = {A. N. Dranishnikov},
title = {On~homological dimension modulo~$p$},
journal = {Sbornik. Mathematics},
pages = {413--425},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/}
}
A. N. Dranishnikov. On~homological dimension modulo~$p$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 413-425. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a10/