Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 163-176

Voir la notice de l'article provenant de la source Math-Net.Ru

The transforms \begin{gather*} \varphi_\nu(x)=\int_0^\infty\dotsi\int_0^\infty f\Bigl(x\prod t_i\Bigr)e^{-\sum{t_i^r}}\prod t _i^{r{\nu_i}+r-1}\,dt_i, \\ f(x)=\biggl(\frac r{2\pi i}\biggr)^{r-1}\int_{-\infty}^{(0+)}\dotsi\int_{-\infty}^{(0+)}\varphi_\nu\Bigl(x\prod t_i^{-\frac1r}\Bigr)e^{\sum{t_i}}\prod t_i^{{-\nu_i}-1}\,dt_i \end{gather*} are introduced for an integer $r\geqslant2$ and a given vector $\nu=(\nu_1,\dots,\nu_{r-1})$. Their duality is substantiated, applications of the differentiation operations are studied, and other properties of $\nu$-transforms are established. A number of examples are given to illustrate the method of $\nu$-transforms for solving some classes of differential equations and boundary value problems for partial differential equations. Bibliography: 9 titles.
@article{SM_1988_60_1_a9,
     author = {M. I. Klyuchantsev},
     title = {Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms},
     journal = {Sbornik. Mathematics},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a9/}
}
TY  - JOUR
AU  - M. I. Klyuchantsev
TI  - Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 163
EP  - 176
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a9/
LA  - en
ID  - SM_1988_60_1_a9
ER  - 
%0 Journal Article
%A M. I. Klyuchantsev
%T Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms
%J Sbornik. Mathematics
%D 1988
%P 163-176
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a9/
%G en
%F SM_1988_60_1_a9
M. I. Klyuchantsev. Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 163-176. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a9/