On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus 0
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 143-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Weil–Petersson metric on the Teichmüller space $T_{0,n}$ of marked Riemann surfaces of genus 0 with $n$ punctures, a potential is constructed in terms of the density of the hyperbolic metric on the corresponding surface (i.e., in terms of a solution of Liouville's equation). It is shown that this potential is a generating function of the accessory parameters of the Fuchsian uniformization of the corresponding Riemann surface. Also, a connection is established between the accessory parameters and the Eichler integrals of Fuchsian groups. Bibliography: 18 titles.
@article{SM_1988_60_1_a8,
     author = {P. G. Zograf and L. A. Takhtadzhyan},
     title = {On~Liouville's equation, accessory parameters, and the geometry of {Teichm\"uller} space for {Riemann} surfaces of genus~0},
     journal = {Sbornik. Mathematics},
     pages = {143--161},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a8/}
}
TY  - JOUR
AU  - P. G. Zograf
AU  - L. A. Takhtadzhyan
TI  - On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus 0
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 143
EP  - 161
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a8/
LA  - en
ID  - SM_1988_60_1_a8
ER  - 
%0 Journal Article
%A P. G. Zograf
%A L. A. Takhtadzhyan
%T On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus 0
%J Sbornik. Mathematics
%D 1988
%P 143-161
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a8/
%G en
%F SM_1988_60_1_a8
P. G. Zograf; L. A. Takhtadzhyan. On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus 0. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 143-161. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a8/

[1] Klein F., “Neue Beiträge zur Riemann'schen Funktionentheorie”, Math. Ann., 21 (1883), 141–218 | DOI | MR

[2] Poincaré H., “Sur les groupes des équations linéaires”, Acta Math., 4 (1884), 201–312 ; Puankare A., Izbrannye trudy, T. 3, Nauka, M., 1974, S. 145–234 | DOI | MR

[3] Poincaré H., “Les fonctions fuchsiennes et l'équation $\Delta u=e^u$”, J. Math. pures et appl. $5^{\text{e}}$ sér., 4 (1898), 157–230; Puankare A., Izbrannye trudy, Nauka, M., 1974, T. 3

[4] Polyakov A. M., “Quantum geometry of bosonic strings”, Phys. Lett., 1038:3 (1981), 207–210 | MR

[5] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry group in two-dimensional quantum field theory”, Nucl. Phys., 241:2 (1984), 333–380 | DOI | MR | Zbl

[6] Zograf P. G., Takhtadzhyan L. A., “Deistvie uravneniya Liuvillya – proizvodyaschaya funktsiya dlya aktsessornykh parametrov i potentsial metriki Veilya–Petersona na prostranstve Teikhmyullera”, Funktsion. analiz i ego pril., 19:3 (1985), 67–68 | MR | Zbl

[7] Zograf P. G., Takhtadzhyan L. A., Ob uravnenii Liuvillya, aktsessornykh parametrakh i geometrii prostranstva Teikhmyullera. 1. Rimanovy poverkhnosti roda 0, Preprint LOMI. R-11–85, Leningrad, LOMI, 1985 | MR

[8] Hejhal D., “Monodromy groups and linearly polymorphic functions”, Acta Math., 135 (1975), 1–55 | DOI | MR | Zbl

[9] Kra I., Avtomorfnye formy i kleinovy gruppy, Mir, M., 1975 | MR | Zbl

[10] Lehner J., Discontinuous groups and automorphic functions, Providence, 1964 | MR

[11] Venkov A. B., “Ob aktsessornykh koeffitsientakh uravneniya Fuksa vtorogo poryadka s veschestvennymi osobymi tochkami”, Avtomorfnye funktsii i teorii chisel. 1. Zap. nauchn. semin. LOMI, T. 129, Nauka, L., 1983, 17–29 | MR | Zbl

[12] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[13] Ahlfors L., Bers L., “Riemann's mapping theorem for variable metrics”, Ann. Math., 72 (1960), 385–404 | DOI | MR | Zbl

[14] Bers L., Spaces of Riemann surfaces, Proc. ICM 1958, Cambridge, 1960 | MR

[15] Weill A., “Sur les modules des surfaces de Riemann”, Sém. Bourbaki, 1958

[16] Ahlfors L., “Some remarks on Teichmuller's space of Riemann surfaces”, Ann. Math., 74 (1961), 171–191 | DOI | MR | Zbl

[17] Wolpert S., “The topology and geometry of the moduli space of Riemann surfaces”, Lect. Notes in Math., 1111, 1985, 431–451 | MR | Zbl

[18] Masur H., “The extension of the Weil–Peterson metric to the boundary of Teichmüller spaces”, Duke Math. J, 32 (1976), 625–636 | MR