The normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 133-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Normal forms of fibrations of binomial surfaces are found. The results are applied to the study of slow motions of equations of relaxation type. Figures: 2. Bibliography: 7 titles.
@article{SM_1988_60_1_a7,
     author = {A. A. Davydov},
     title = {The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces},
     journal = {Sbornik. Mathematics},
     pages = {133--141},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - The normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 133
EP  - 141
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/
LA  - en
ID  - SM_1988_60_1_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%T The normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
%J Sbornik. Mathematics
%D 1988
%P 133-141
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/
%G en
%F SM_1988_60_1_a7
A. A. Davydov. The normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 133-141. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/

[1] Arnold V. I., “Perestroiki osobennostei potentsialnykh potokov v besstolknovitelnoi srede i metamorfozy kaustik v trekhmeonom prostranstve”, Tr. seminara im. I. G. Petrovskogo, 8, 1982, 21–57 | MR

[2] Arnold V. I., “O teorii ogibayuschikh”, UMN, 31:3 (1976), 249

[3] Voronin S. M., “Analiticheskaya klassifikatsiya par involyutsii i ee prilozheniya”, Funktsion. analiz i ego pril., 16:2 (1982), 21–29 | MR | Zbl

[4] Davydov A. A., “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funktsion. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[5] Scherbak O. P., “Proektivno dvoistvennye prostranstvennye krivye i lezhandrovy osobennosti”, Tr. Tbilisskogo universiteta. Ser. matem., mekh., astronomiya, 232–233, 280–336 | Zbl

[6] Dufour J. P., “Stabilite simultanee de deux fonctions”, Ann. Inst. Fourier, 29:1 (1979), 262–282 | MR

[7] Ecalle J., “Theorie iterative. Introduction a la theorie des invariants holomorphes”, J. Math. pures et appl., 54 (1975), 183–258 | MR | Zbl