The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 133-141

Voir la notice de l'article provenant de la source Math-Net.Ru

Normal forms of fibrations of binomial surfaces are found. The results are applied to the study of slow motions of equations of relaxation type. Figures: 2. Bibliography: 7 titles.
@article{SM_1988_60_1_a7,
     author = {A. A. Davydov},
     title = {The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces},
     journal = {Sbornik. Mathematics},
     pages = {133--141},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 133
EP  - 141
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/
LA  - en
ID  - SM_1988_60_1_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%T The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces
%J Sbornik. Mathematics
%D 1988
%P 133-141
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/
%G en
%F SM_1988_60_1_a7
A. A. Davydov. The~normal form of slow motions of an equation of relaxation type and fibrations of binomial surfaces. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 133-141. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a7/