Conjugacy separability of some factor groups of a~free product
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Groups of the form $F/C^{(n)}$ are studied, where $F$ is the free product of groups $B_i$, $i\in I$, and $C^{(n)}$ is the $n$th term of the derived series of the Cartesian subgroup of this product. It is proved that if every $B_i$ is conjugacy separable, residually finite with respect to occurrence in cyclic subgroups, and torsion-free, then the groups $F/C^{(n)}$ are conjugacy separable. Bibliography: 8 titles
@article{SM_1988_60_1_a4,
     author = {Yu. A. Kolmakov},
     title = {Conjugacy separability of some factor groups of a~free product},
     journal = {Sbornik. Mathematics},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/}
}
TY  - JOUR
AU  - Yu. A. Kolmakov
TI  - Conjugacy separability of some factor groups of a~free product
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 67
EP  - 75
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/
LA  - en
ID  - SM_1988_60_1_a4
ER  - 
%0 Journal Article
%A Yu. A. Kolmakov
%T Conjugacy separability of some factor groups of a~free product
%J Sbornik. Mathematics
%D 1988
%P 67-75
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/
%G en
%F SM_1988_60_1_a4
Yu. A. Kolmakov. Conjugacy separability of some factor groups of a~free product. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/