Conjugacy separability of some factor groups of a free product
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Groups of the form $F/C^{(n)}$ are studied, where $F$ is the free product of groups $B_i$, $i\in I$, and $C^{(n)}$ is the $n$th term of the derived series of the Cartesian subgroup of this product. It is proved that if every $B_i$ is conjugacy separable, residually finite with respect to occurrence in cyclic subgroups, and torsion-free, then the groups $F/C^{(n)}$ are conjugacy separable. Bibliography: 8 titles
@article{SM_1988_60_1_a4,
     author = {Yu. A. Kolmakov},
     title = {Conjugacy separability of some factor groups of a~free product},
     journal = {Sbornik. Mathematics},
     pages = {67--75},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/}
}
TY  - JOUR
AU  - Yu. A. Kolmakov
TI  - Conjugacy separability of some factor groups of a free product
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 67
EP  - 75
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/
LA  - en
ID  - SM_1988_60_1_a4
ER  - 
%0 Journal Article
%A Yu. A. Kolmakov
%T Conjugacy separability of some factor groups of a free product
%J Sbornik. Mathematics
%D 1988
%P 67-75
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/
%G en
%F SM_1988_60_1_a4
Yu. A. Kolmakov. Conjugacy separability of some factor groups of a free product. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/

[1] Shmelkin A. L., “O nekotorykh faktor-gruppakh svobodnogo proizvedeniya”, Tr. seminara im. I. G. Petrovskogo, 5, MGU, M., 1979, 209–216 | MR

[2] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7:3 (1957), 29–62 | DOI | MR | Zbl

[3] Shakhova N. G., “O finitnoi approksimiruemosti otnositelno sopryazhennosti”, KhKh Vsesoyuznyi simpozium po teorii grupp. Tez. dokl., M., 1984, 78

[4] Shmelkin A. L., “O svobodnykh proizvedeniyakh grupp”, Matem. sb., 79(121) (1969), 616–620

[5] Remeslennikov V. N., “Finitnaya approksimiruemost grupp otnositelno sopryazhennosti”, Sib. matem. zhurn., 12:5 (1971), 1085–1089 | MR

[6] Remeslennikov V. N., “Sopryazhennost v politsiklicheskikh gruppakh”, Algebra i logika, 8:6 (1969), 712–725 | MR | Zbl

[7] Mattews J., “The conjugacy problem in wreath products and free metabelian groups”, Trans. Amer. Math. Soc., 121:2 (1966), 329–339 | DOI | MR

[8] Remeslennikov V. N., Sokolov V. G., “Nekotorye svoistva vlozheniya Magnusa”, Algebra i logika, 9:5 (1970), 566–578 | MR | Zbl