Conjugacy separability of some factor groups of a~free product
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Groups of the form $F/C^{(n)}$ are studied, where $F$ is the free product of groups $B_i$, $i\in I$, and $C^{(n)}$ is the $n$th term of the derived series of the Cartesian subgroup of this product. It is proved that if every $B_i$ is conjugacy separable, residually finite with respect to occurrence in cyclic subgroups, and torsion-free, then the groups $F/C^{(n)}$ are conjugacy separable.
Bibliography: 8 titles
@article{SM_1988_60_1_a4,
author = {Yu. A. Kolmakov},
title = {Conjugacy separability of some factor groups of a~free product},
journal = {Sbornik. Mathematics},
pages = {67--75},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/}
}
Yu. A. Kolmakov. Conjugacy separability of some factor groups of a~free product. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a4/