On passage to the limit in quasilinear elliptic equations with several independent variables
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 47-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are established under which the solution of the first boundary value problem for a sequence of linear or quasilinear uniformly elliptic equations with weakly convergent coefficients converges to the solution of the respective limit problem. One of the main requirements in those conditions is weak equicontinuity, with respect to the independent variables, of the leading coefficients of the equations being considered. Examples show that these conditions of the theorems are essential. Bibliography: 18 titles.
@article{SM_1988_60_1_a3,
     author = {V. L. Kamynin},
     title = {On~passage to the limit in quasilinear elliptic equations with several independent variables},
     journal = {Sbornik. Mathematics},
     pages = {47--66},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a3/}
}
TY  - JOUR
AU  - V. L. Kamynin
TI  - On passage to the limit in quasilinear elliptic equations with several independent variables
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 47
EP  - 66
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a3/
LA  - en
ID  - SM_1988_60_1_a3
ER  - 
%0 Journal Article
%A V. L. Kamynin
%T On passage to the limit in quasilinear elliptic equations with several independent variables
%J Sbornik. Mathematics
%D 1988
%P 47-66
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a3/
%G en
%F SM_1988_60_1_a3
V. L. Kamynin. On passage to the limit in quasilinear elliptic equations with several independent variables. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a3/

[1] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[2] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, North Holland, Amsterdam, 1978 | MR

[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Bakhvalov N. S, Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[5] Markov V. G., Oleinik O. A., “O rasprostranenii tepla v odnomernykh dispersnykh sredakh”, PMM, 39:6 (1975), 1073–1081 | MR | Zbl

[6] Oleinik O. A., “O skhodimosti reshenii ellipticheskikh i parabolicheskikh uravnenii pri slaboi skhodimosti kozffitsientov”, UMN, 30:4 (1975), 257–258 | MR

[7] Senatorov P. K., “Koeffitsientnaya ustoichivost reshenii obyknovennykh differentsialnykh uravnenii vtorogo poryadka i parabolicheskikh uravnenii na ploskosti”, Differents. uravneniya, 7:4 (1971), 754–758 | MR | Zbl

[8] Sbordone C., “Alcune questioni di convergenza per operatori differenziali del $2^{\circ}$ ordine”, Bollet. U.M.I. Ser. 4, 10:3 (1974), 672–682 | MR | Zbl

[9] Marcellini P., “Convergence of second order linear elliptic operators”, Bollet. U.M.I. Ser. 5, 16-B:1 (1979), 278–290 | MR | Zbl

[10] Kruzhkov S. N., Kamynin V. L., “Skhodimost reshenii kvazilineinykh parabolicheskikh uravnenii so slabo skhodyaschimisya koeffitsientami”, DAN SSSR, 270:3 (1983), 533–536 | MR | Zbl

[11] Kamynin V. L., “O predelnom perekhode v kvazilineinykh parabolicheskikh uravneniyakh vysokogo poryadka”, Dinamika sploshnoi sredy, 63, Izd-vo SO AN SSSR, Novosibirsk, 1983, 122–128 | MR

[12] Kruzhkov S. N., Kamynin V. L., “O predelnom perekhode v kvazilineinykh parabolicheskikh uravneniyakh”, Tr. MIAN, 167 (1985), 183–206 | MR | Zbl

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[14] Kordes G. O., “O pervoi kraevoi zadache dlya kvazilineinykh differentsialnykh uravnenii bolee chem s dvumya peremennymi”, Matematika (sb. perevodov), 3:2 (1959), 75–107

[15] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, 3ap. nauchn. seminarov LOMI, 96 (1980), 272–287 | MR | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., “Otsenka gelderovskoi normy reshenii kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka obschego vida”, 3ap. nauchn. seminarov LOMI, 96 (1980), 161–168 | MR | Zbl

[17] Zhikov V. V., Sirazhudinov M. M., “O $G$-kompaktnosti odnogo klassa nedivergentnykh ellipticheskikh operatorov vtorogo poryadka”, Izv. AN SSSR. Ser. matem., 45 (1981), 718–733 | MR | Zbl

[18] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl