, $\omega$ and $\omega_1$ are positive monotone functions, and $T$ denotes, respectively, a) a multidimensional Calderón–Zygmund singular integral extended over a domain $S$ in $R_m$ ($r(x)$ is the distance from $x\in S$ to the boundary of the domain); and b) the conjugate function ($S=(-\pi,\pi)$, $r(x)=|x|$). In case a) a class of domains is distinguished (domains of type $\alpha$ in $R_m$) which, in particular, contains domains with smooth boundaries; for each domain of type $\alpha$, $0\le\alpha
@article{SM_1988_60_1_a2,
author = {E. G. Guseinov},
title = {Singular integrals in spaces of functions summable with a~monotone weight},
journal = {Sbornik. Mathematics},
pages = {29--46},
year = {1988},
volume = {60},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a2/}
}
E. G. Guseinov. Singular integrals in spaces of functions summable with a monotone weight. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a2/
[1] Hardy G. H., Littlewood J. E., “Some more theorems concerning Fourier series and Fourier power series”, Duke Math. J., 2:2 (1936), 354–382 | DOI | MR | Zbl
[2] Luzin N. N., Integral i trigonometricheskii ryad, Gostekhizdat, M., 1951 | MR
[3] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27:2 (1927), 218–244 | MR | Zbl
[4] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Sovremennye problemy matematiki, 7, VINITI, M., 1975, 5–162
[5] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl
[6] Calderon A. P., Zygmund A., “On singular integrals”, Amer. J. Math., 78:2 (1956), 289–309 | DOI | MR | Zbl
[7] Stein E. M., “Note on singular integrals”, Proc. Amer. Math. Soc., 8:2 (1957), 250–254 | DOI | MR | Zbl
[8] Gegelia T. G., “Ob ogranichennosti singulyarnykh operatorov”, Soobsch. AN GSSR, 20:5 (1958), 517–523 | MR | Zbl
[9] Chen Yung-ming, “Theorems of asymptotic approximations”, Math. Ann., 140:5 (1960), 360–407 | DOI | MR | Zbl
[10] Dzhanelidze O. P., “Ob ogranichennosti mnogomernogo singulyarnogo operatora v prostranstvakh s vesom”, Soobsch. AN GOSR, 87:2 (1977), 301–303 | MR
[11] Uspenskii S. V., “O smeshannykh proizvodnykh, summiruemykh s vesom”, Differents. uravneniya, 3:1 (1967), 139–154 | MR | Zbl
[12] Timan T. A., “Usloviya suschestvovaniya i otsenki preobrazovanii tipa Kalderona–Zigmunda v vesovykh $L_p$-prostranstvakh”, Tr. MIAN, 105, 1969, 213–229 | MR | Zbl
[13] Makanina T. A., “Ob invariantnosti vesovykh $L_p$-klassov otnositelno singulyarnykh integralnykh preobrazovanii”, Sb. tr. MISI, 1977, no. 153, 58–63
[14] Kokilashvili V. M., “Ob ogranichennosti singulyarnykh integralnykh operatorov v prostranstve $L_p$ s vesom”, Tr. simpoz. po mekh. splosh. sredy i rodstven, probl. analiza. 1971, 1, Metsniereba, Tbilisi, 1973, 125–141
[15] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Mathematica, LI (1974), 241–250 | MR
[16] Kaneko M., Jano S., “Weighted norm inequalities for singular integrals”, J. Math. Soc. Jap., 27:4 (1975), 570–588 | DOI | MR | Zbl
[17] Cordoba A., Fefferman C., “A weighted norm inequality for singular integrals”, Stud. math. (PRL), 57:1 (1976), 97–101 | MR | Zbl
[18] Sawyer E. T., “Two weight norm inequalities for certain maximal and integral operators”, Lect. Notes Math., 908, 1982, 102–127 | MR | Zbl
[19] Muckenhoupt B., “Weighted norm inequalities for classical operators”, Harmonic analysis in euclidean spaces, XXXV:1 (1979), 69–83 | MR
[20] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhniki. Matematicheekii analiz, 21, VINITI, M., 1983, 42–129 | MR
[21] Kudryavtsev L. D., “Pryamye i obratnye teoremy vlozheniya. Prilozheniya k resheniyu variatsionnym metodom ellipticheskikh uravnenii”, Tr. MIAN, 55, 1959, 1–181 | MR | Zbl
[22] Salaev V. V., “Osobye (singulyarnye) integraly s nepreryvnoi plotnostyu”, Teoriya priblizheniya funktsii., Tr. Mezhdunarodnoi konferentsii po teorii priblizheniya funktsii, Nauka, M., 1977, 305–322
[23] Abdullaev S. K., Babaev A. A., “Nekotorye otsenki dlya osobogo integrala s summiruemoi plotnostyu”, DAN SSSR, 188:2 (1969), 263–265 | MR
[24] Guseinov E. G., Salaev V. V., “Osobyi integral po otrezku pryamoi v prostranstvakh summiruemykh funktsii”, Nauchn. tr. MB i SSO AzSSR. Ser. fiz.-matem. nauk, 1979, no. 1, 81–87 | MR
[25] Guseinov E. G., Mnogomernyi singulyarnyi integral po oblasti v klassakh summiruemykh funktsii, Rukopis dep. v VINITI 5.5.83, No 2770-83
[26] Muckenhoupt B., “Hardy's inequality with weights”, Stud. Math., 44 (1972), 31–38 | MR | Zbl
[27] Calderon A. P., Zygmund A. A., “On the existense of certain singular integrals”, Acta Math., 88:1–2 (1952), 85–139 | DOI | MR | Zbl
[28] Salaev V. V., “Pryamye i obratnye otsenki dlya osobogo integrala Koshi po zamknutoi krivoi”, Matem. zametki, 19:3 (1976), 365–380 | MR | Zbl
[29] Shvarts L., Analiz, v. 1, Mir, M., 1972
[30] Kamke E., Integral Lebega–Stiltesa, Fizmatgiz, M., 1959
[31] Privalov I. I., Integral Koshi, Saratovskii un-t, Saratov, 1919
[32] Babenko K. I., “O sopryazhennykh funktsiyakh”, DAN SSSR, 62:2 (1948), 157–160 | MR | Zbl