Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 269-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers the validity of an estimate in the norm of the Hölder spaces $C^\beta$ for the solutions of linear elliptic equations $a_{ij}u_{x_ix_j}=0$, where $\nu|l|^2\leqslant a_{ij}l_il_j\leqslant\nu^{-1}|l|^2$ for all $l=(l_1,\dots,l_n)\in E_n$ ($n\geqslant2$, $\nu=\mathrm{const}>0$). This estimate does not depend on the smoothness of the coefficients $a_{ij}=a_{ij}(x)$. It is known (RZh. Mat., 1980, 6Б433) that such an estimate holds for sufficiently small exponents $\beta\in(0,1)$ depending on $n$ and $\nu$. In this paper it is proved that this dependence is essential: for every $\beta_0\in(0,1)$ one can exhibit a constant $\nu\in(0,1)$ and construct a sequence in $E_3$ of elliptic equations, of the indicated form with smooth coefficients, whose solutions converge uniformly in the unit ball to a function that does not belong to $C^{\beta_0}$. Bibliography: 5 titles.
@article{SM_1988_60_1_a15,
     author = {M. V. Safonov},
     title = {Unimprovability of estimates of {H\"older} constants for solutions of linear elliptic equations with measurable coefficients},
     journal = {Sbornik. Mathematics},
     pages = {269--281},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a15/}
}
TY  - JOUR
AU  - M. V. Safonov
TI  - Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 269
EP  - 281
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a15/
LA  - en
ID  - SM_1988_60_1_a15
ER  - 
%0 Journal Article
%A M. V. Safonov
%T Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients
%J Sbornik. Mathematics
%D 1988
%P 269-281
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a15/
%G en
%F SM_1988_60_1_a15
M. V. Safonov. Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 269-281. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a15/

[1] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 161–175 | MR | Zbl

[2] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, 3ap. nauch. seminarov LOMI, 96 (1980), 272–287 | MR | Zbl

[3] Nirenberg L., “On nonlinear elliptic partial differential equations and Hölder continuity”, Comm. Pure and Appl. Math., 6 (1953), 103–156 | DOI | MR | Zbl

[4] Cordes H. O., “Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen”, Math. Ann., 131 (1956), 278–312 ; Kordes G. S., “O pervoi kraevoi zadache dlya kvazilineinykh differentsialnykh uravnenii vtorogo poryadka bolee chem s dvumya peremennymi”, Matematika (sb. perevodov), 3:2 (1959), 75–107 | DOI | MR | Zbl

[5] Nadirashvili N. S., “K zadache s naklonnoi proizvodnoi”, Matem. sb., 127(169) (1985), 398–416 | MR