Liouville coverings of complex spaces, and amenable groups
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 197-216

Voir la notice de l'article provenant de la source Math-Net.Ru

The author determines conditions under which a connected unramified holomorphic covering of a Liouville space is again a Liouville space. Bibliography: 31 titles.
@article{SM_1988_60_1_a11,
     author = {V. Ya. Lin},
     title = {Liouville coverings of complex spaces, and amenable groups},
     journal = {Sbornik. Mathematics},
     pages = {197--216},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a11/}
}
TY  - JOUR
AU  - V. Ya. Lin
TI  - Liouville coverings of complex spaces, and amenable groups
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 197
EP  - 216
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a11/
LA  - en
ID  - SM_1988_60_1_a11
ER  - 
%0 Journal Article
%A V. Ya. Lin
%T Liouville coverings of complex spaces, and amenable groups
%J Sbornik. Mathematics
%D 1988
%P 197-216
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a11/
%G en
%F SM_1988_60_1_a11
V. Ya. Lin. Liouville coverings of complex spaces, and amenable groups. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 197-216. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a11/