Approximation by a “floating” system of exponentials on classes of smooth periodic functions
Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of approximating functions by trigonometric polynomials with a given number of harmonics is considered. The exact degree of approximation is determined for three closely related classes of smooth functions: those defined by differential properties, by difference properties, and functions in Besov spaces. In contrast to the classical case, the degrees of approximation for these classes turn out to be different from each other. Bibliography: 14 titles
@article{SM_1988_60_1_a1,
     author = {\`E. S. Belinskii},
     title = {Approximation by a {\textquotedblleft}floating{\textquotedblright} system of exponentials on classes of smooth periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {19--27},
     year = {1988},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_1_a1/}
}
TY  - JOUR
AU  - È. S. Belinskii
TI  - Approximation by a “floating” system of exponentials on classes of smooth periodic functions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 19
EP  - 27
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_1_a1/
LA  - en
ID  - SM_1988_60_1_a1
ER  - 
%0 Journal Article
%A È. S. Belinskii
%T Approximation by a “floating” system of exponentials on classes of smooth periodic functions
%J Sbornik. Mathematics
%D 1988
%P 19-27
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_60_1_a1/
%G en
%F SM_1988_60_1_a1
È. S. Belinskii. Approximation by a “floating” system of exponentials on classes of smooth periodic functions. Sbornik. Mathematics, Tome 60 (1988) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/SM_1988_60_1_a1/

[1] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[2] Maiorov V. E., “Trigonometricheskie $n$-poperechniki klassa $W_l^r$ v prostranstve $L_q$”, Matematicheskoe programmirovanie i smezhnye voprosy. Teoriya operatorov v lineinykh prostranstvakh, TsEMI, M., 1976, 199–208 | MR

[3] Maiorov V. E., “O lineinykh poperechnikakh sobolevskikh klassov i tsepochkakh ekstremalnykh podprostranstv”, Matem. sb., 113(155) (1980), 437–463 | MR | Zbl

[4] Belinskii E. S., “Priblizhenie periodicheskikh funktsii “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1984, 10–24 | MR | Zbl

[5] Macovoz G. J., “On trigonometric $n$-widths and Their Generalization”, J. of Appr. theory, 41:4 (1984), 361–366 | DOI | MR

[6] Temlyakov V. N., “O priblizhenii periodicheskikh funktsii neskolkikh peremennykh”, DAN SSSR, 279:2 (1984), 301–305 | MR | Zbl

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[8] Temlyakov V. N., “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, DAN SSSR, 267:2 (1982), 314–317 | MR

[9] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41 (1977), 334–351 | Zbl

[10] Kashin B. S., “O poperechnikakh klassov Soboleva maloi gladkosti”, Vestn. MGU. Ser. 1. Matem. mekh., 1981, no. 5, 50–53 | MR

[11] Kulanin E. D., “O poperechnikakh klassa funktsii ogranichennoi variatsii v prostranstve $L^q(0,1)$, $2\infty$”, UMN, 38:5 (1983), 191–192 | MR | Zbl

[12] Kulanin E. D., “Otsenki poperechnikov klassov Soboleva maloi gladkosti”, Vestn. MGU. Ser. 1. Matem., mekh., 1983, no. 2, 24–30 | MR | Zbl

[13] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[14] Korneichuk N. P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976