Algebraic proof of the separation property for an intuitionistic provability calculus
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 397-406
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For intuitionistic provability calculus $I^\Delta$ obtained from the intuitionistic propositional calculus by adjoining to the postulates of the latter the axioms $(p\supset\Delta p)$, $((\Delta p\supset p)\supset p)$ and $(\Delta p\supset(((q\supset p)\supset q)\supset q))$, an algebraic proof is given of the separation property: $I^\Delta\vdash a$ if and only if there exists a derivation of formula $a$ whose terms contain only those connectives that occur in $a$. The proof is achieved by constructing an (isomorphic) embedding of pseudo-Boolean algebras, and on this basis then constructing embeddings, into $\Delta$-pseudo-Boolean algebras, of algebras whose classes approximate corresponding fragments of the calculus $I^\Delta$.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1988_59_2_a7,
     author = {A. U. Muravitskii},
     title = {Algebraic proof of the separation property for an intuitionistic provability calculus},
     journal = {Sbornik. Mathematics},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/}
}
                      
                      
                    A. U. Muravitskii. Algebraic proof of the separation property for an intuitionistic provability calculus. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 397-406. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/
