Algebraic proof of the separation property for an intuitionistic provability calculus
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 397-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For intuitionistic provability calculus $I^\Delta$ obtained from the intuitionistic propositional calculus by adjoining to the postulates of the latter the axioms $(p\supset\Delta p)$, $((\Delta p\supset p)\supset p)$ and $(\Delta p\supset(((q\supset p)\supset q)\supset q))$, an algebraic proof is given of the separation property: $I^\Delta\vdash a$ if and only if there exists a derivation of formula $a$ whose terms contain only those connectives that occur in $a$. The proof is achieved by constructing an (isomorphic) embedding of pseudo-Boolean algebras, and on this basis then constructing embeddings, into $\Delta$-pseudo-Boolean algebras, of algebras whose classes approximate corresponding fragments of the calculus $I^\Delta$. Bibliography: 14 titles.
@article{SM_1988_59_2_a7,
     author = {A. U. Muravitskii},
     title = {Algebraic proof of the separation property for an intuitionistic provability calculus},
     journal = {Sbornik. Mathematics},
     pages = {397--406},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/}
}
TY  - JOUR
AU  - A. U. Muravitskii
TI  - Algebraic proof of the separation property for an intuitionistic provability calculus
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 397
EP  - 406
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/
LA  - en
ID  - SM_1988_59_2_a7
ER  - 
%0 Journal Article
%A A. U. Muravitskii
%T Algebraic proof of the separation property for an intuitionistic provability calculus
%J Sbornik. Mathematics
%D 1988
%P 397-406
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/
%G en
%F SM_1988_59_2_a7
A. U. Muravitskii. Algebraic proof of the separation property for an intuitionistic provability calculus. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 397-406. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a7/

[1] Kuznetsov A. V., “Dokazuemostno-intuitsionistskaya logika”, Modalnye i intensionalnye logiki (tez. koordinats. sovesch.), M., 1978, 75–79

[2] Kuznetsov A. V., Muravitskii A. Yu., “Dokazuemost kak modalnost”, Aktualnye problemy logiki i metodologii nauki, Naukova dumka, Kiev, 1980, 193–230

[3] Kuznetsov A. V., Muravitsky A. Yu., On superintuitionistic logics as fragments of provability logic extensions, Studia Logica, 1986 | MR

[4] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957

[5] Muravitskii A. Yu., “O finitnoi approksimiruemosti ischisleniya $I^{\Delta}$ i nemodeliruemosti nekotorogo ego rasshireniya”, Matem. zametki, 29:6 (1981), 907–916 | MR

[6] Muravitskii A. Yu., “Kriterii $\Delta$-obogatimosti psevdobulevykh algebr i nekotorye vlozheniya”, Sedmaya Vsesoyuznaya konf. po matem. logike, Novosibirsk, 1984, 115

[7] Simonova I. G., “Separatsionnaya teorema dlya dokazuemostno-intuitsionistskogo ischisleniya”, Sedmaya Vsesoyuznaya konf. po matem. logike, Novosibirsk, 1984, 165

[8] Rasëva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR

[9] Kuznetsov L. V., “Deltiruemye elementy psevdobulevykh algebr”, Shestaya Vsesoyuznaya konf. po matem. logike, Tbilisi, 1982, 93

[10] Rasiowa H., An algebraic approach to non-classical logics, Warszawa, 1974 | MR

[11] Maksimova L. L., “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[12] Grätzer G., Universal algebra, 2-th ed., New York, 1979 | MR

[13] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[14] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl