On the asymptotic behavior of entire Dirichlet series
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 379-396
Voir la notice de l'article provenant de la source Math-Net.Ru
For entire functions $F$ given by Dirichlet series
$$
F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n},\qquad0=\lambda_0\lambda_1\cdots\lambda_n\uparrow+\infty\quad(n\to+\infty),
$$
absolutely convergent in $\mathbf C$ some results are proved which give best possible, or close to best possible, conditions sufficient for the relation
$$
F(s)=(1+o(1))a_\nu e^{s\lambda_\nu}\qquad(s=\sigma+it)
$$
as $\sigma\to+\infty$ outside some set, where $\nu=\nu(\sigma)$ is the central index of the Dirichlet series.
Bibliography: 4 titles.
@article{SM_1988_59_2_a6,
author = {O. B. Skaskiv and M. N. Sheremeta},
title = {On the asymptotic behavior of entire {Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {379--396},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a6/}
}
O. B. Skaskiv; M. N. Sheremeta. On the asymptotic behavior of entire Dirichlet series. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a6/