On the asymptotic behavior of entire Dirichlet series
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 379-396
Cet article a éte moissonné depuis la source Math-Net.Ru
For entire functions $F$ given by Dirichlet series $$ F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n},\qquad0=\lambda_0<\lambda_1<\cdots<\lambda_n\uparrow+\infty\quad(n\to+\infty), $$ absolutely convergent in $\mathbf C$ some results are proved which give best possible, or close to best possible, conditions sufficient for the relation $$ F(s)=(1+o(1))a_\nu e^{s\lambda_\nu}\qquad(s=\sigma+it) $$ as $\sigma\to+\infty$ outside some set, where $\nu=\nu(\sigma)$ is the central index of the Dirichlet series. Bibliography: 4 titles.
@article{SM_1988_59_2_a6,
author = {O. B. Skaskiv and M. N. Sheremeta},
title = {On the asymptotic behavior of entire {Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {379--396},
year = {1988},
volume = {59},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a6/}
}
O. B. Skaskiv; M. N. Sheremeta. On the asymptotic behavior of entire Dirichlet series. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a6/
[1] Fenton P. C., “The minimum modulus of gap power series”, Proc. Edinburgh Math. Soc., 21 (1978), 49–54 | DOI | MR | Zbl
[2] Barry P. D., “The minimum modulus of small integral functions”, Proc. London Math. Soc. (3), 12 (1960), 445–495 | DOI | MR
[3] Skaskiv O. B., “Maksimum modulya i maksimalnyi chlen tselogo ryada Dirikhle”, DAN USSR, ser. A, 1984, no. 11, 22–24 | MR | Zbl
[4] Sheremeta M. N., “Analogi teoremy Vimana dlya ryadov Dirikhle”, Matem. sb., 110(152) (1979), 102–116 | MR | Zbl