Relations for the coefficients, and singular points of a function
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 349-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical theorem of Poincaré on recursion relations is generalized. As the main application, a conjecture of Gonchar is proved for the case of the $m$th row of the multipoint Padé approximants of a function holomorphic in some neighborhood of a given continuum. Bibliography: 15 titles.
@article{SM_1988_59_2_a5,
     author = {V. I. Buslaev},
     title = {Relations for the coefficients, and singular points of a~function},
     journal = {Sbornik. Mathematics},
     pages = {349--377},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a5/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Relations for the coefficients, and singular points of a function
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 349
EP  - 377
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a5/
LA  - en
ID  - SM_1988_59_2_a5
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Relations for the coefficients, and singular points of a function
%J Sbornik. Mathematics
%D 1988
%P 349-377
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a5/
%G en
%F SM_1988_59_2_a5
V. I. Buslaev. Relations for the coefficients, and singular points of a function. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 349-377. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a5/

[1] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[2] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[3] Gonchar A. A., “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Matem. sb., 115(157) (1981), 590–613 | MR | Zbl

[4] Suetin S. P., “O polyusakh $m$-i stroki tablitsy Pade”, Matem. sb., 120(162) (1983), 500–504 | MR | Zbl

[5] Vavilov V. V., “Ob osobykh tochkakh meromorfnoi funktsii, zadannoi svoim ryadom Teilora”, DAN SSSR, 231:6 (1976), 1281–1284 | MR | Zbl

[6] Vavilov V. V., Lopes G., Prokhorov V. A., “Ob odnoi obratnoi zadache dlya strok tablitsy Pade”, Matem. sb., 110(152) (1979), 117–129 | MR

[7] Vavilov V. V., Prokhorov V. A., Suetin S. P., “Polyusy $m$-i stroki tablitsy Pade i osobye tochki funktsii”, Matem. sb., 122(164) (1983), 475–480 | MR | Zbl

[8] Suetin S. P., “Ob odnoi obratnoi zadache dlya $m$-i stroki tablitsy Pade”, Matem. sb., 124(166) (1984), 238–250 | MR | Zbl

[9] Baker G. A. Jr., Essentials of Pade Approximants, Academic Press, New York, 1975 | MR

[10] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[11] Kakehashi T., Tetsuro, “The Decomposition of Coefficients of Power-series and the Divergence of Interpolation Polynomials”, Proc. Japan Acad., XXXI:8 (1955), 517–525 | DOI | MR

[12] Chin L. K., “O $m$-i stroke mnogotochechnykh approksimatsii Pade”, Vestn. MGU. Ser. 1. Matem., mekh., 1986

[13] de Montessus de Ballore R., “Sur les fractions continues algebriques”, Bull. Soc. Math. France, 30 (1902), 28–36 | MR | Zbl

[14] Agmon S., “Sur les series de Dirichlet”, Ann. Ec. Norm. Sup., 66 (1949), 263–310 | MR | Zbl

[15] Hadamard J., “Essai sur l'etude des fonctions donnees par leur developpement de Taylor”, J. Math., 4(8) (1982), 101–186