On a question of L. V. Keldysh concerning the structure of Borel sets
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 317-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with the solution of certain old problems in descriptive set theory and topology connected with the structural properties of the Borel sets in the space of irrational numbers. At the center of this circle of problems is the question of L. V. Keldysh on the universality of an element strictly of class $\alpha$. The author's solution is based on the principle of determinancy, which, as Martin proved, is satisfied for Borel sets. Closely connected with the question of Keldysh are certain problems considered by Lusin, Aleksandrov and Urysohn, and others. In this paper an answer is given, in particular, to a question posed by them on the number of irreducible Borel sets in each Borel class (a Borel set is said to be irreducible if any nonempty open-closed subset of it is indistinguishable from the ground set by some classification of the Borel sets). Bibliography: 23 titles.
@article{SM_1988_59_2_a3,
     author = {A. V. Ostrovsky},
     title = {On a question of {L.} {V.~Keldysh} concerning the structure of {Borel} sets},
     journal = {Sbornik. Mathematics},
     pages = {317--337},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a3/}
}
TY  - JOUR
AU  - A. V. Ostrovsky
TI  - On a question of L. V. Keldysh concerning the structure of Borel sets
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 317
EP  - 337
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a3/
LA  - en
ID  - SM_1988_59_2_a3
ER  - 
%0 Journal Article
%A A. V. Ostrovsky
%T On a question of L. V. Keldysh concerning the structure of Borel sets
%J Sbornik. Mathematics
%D 1988
%P 317-337
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a3/
%G en
%F SM_1988_59_2_a3
A. V. Ostrovsky. On a question of L. V. Keldysh concerning the structure of Borel sets. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 317-337. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a3/

[1] Keldysh L. V., “Struktura $B$-mnozhestv”, DAN SSSR, 31:7 (1941), 651–653 | Zbl

[2] Keldysh L. V., “Struktura $B$-mnozhestv”, Tr. MIAN, 17, 1945, 1–74 | MR | Zbl

[3] Keldysh L. V., “Ob otkrytykh otobrazheniyakh $A$-mnozhestv”, DAN SSSR, 49 (1945), 646–648

[4] Luzin N. N., Sobr. soch., t. 2, Izd-vo AN SSSR, M., 1958 | MR

[5] Novikov P. S., Lyapunov A. A., “Deskriptivnaya teoriya mnozhestv”, Matematika v SSSR za 30 let, Gostekhizdat, M.-L., 1948, 243–255

[6] Aleksandrov P. S., Uryson Ya. S., O nulmernykh mnozhestvakh, P. S. Aleksandrov. Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978 | MR

[7] Kuratovskii K. K., Topologiya, t. 1, Mir, M., 1966 | MR

[8] Ostrovskii A. V., “Nepreryvnye obrazy proizvedeniya $C\times Q$ kantorova sovershennogo mnozhestva $C$ i ratsionalnykh chisel $Q$”, Seminar po obschei topologii, Izd-vo MGU, M., 1981, 78–85 | MR

[9] Ostrovskii A. V., “K voprosu o strukture borelevskikh mnozhestv”, Topologiya i teoriya mnozhestv, Izd-vo Udm. gos. univ., Izhevsk, 1983, 75–78

[10] Ostrovskii A. V., “Borelevskie prodolzheniya, selektory i neizomorfnye $A$-mnozhestva”, Tr. Leningradskoi Mezhdunarodnoi topologicheskoi konferentsii, Nauka, L., 1983, 84–90

[11] Schegolkov E. A., “Elementy teorii $B$-mnozhestv”, UMN, 5:5 (1950), 14–85 | MR

[12] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[13] Medvedev S. V., “Nulmernye odnorodnye borelevskie mnozhestva”, DAN SSSR, 283:3 (1985), 542–545 | MR | Zbl

[14] Martin D. A., Deskriptivnaya teoriya mnozhestv, Spravochnaya kniga po matematicheskoi logike, ch. 2. Teoriya mnozhestv, Nauka, M., 1982 | MR | Zbl

[15] Taimanov A. D., “Ob otkrytykh obrazakh borelevskikh mnozhestv”, Matem sb., 37(79) (1955), 293–300 | MR | Zbl

[16] van Engelen F., “Qountable products of zero-dimensionat absolute $F_{\sigma\delta}$-spaces”, Proceedings of Koniki. Ned. Akad. Weter., Ser. A, Math. Sc, 87:4 (1984), 391–399

[17] van Engelen A. J. M., Homogeneous zero-dimensional absolute Boret sets, Centrum voor wiskunde en informatika, Amsterdam, 1985

[18] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[19] Louveau A., “Some results in Wadge hierarhy of Borel sets”, Cabal Seminar 79–81, 1983, no. 1019, 28–55 | DOI | MR | Zbl

[20] Martin D. A., “Infinite games and effektive descriptive set theory”, C. A. Rogers. Analitik sets, Akad. press., 1980, 403–470 | MR

[21] Steel J., “Analitic sets and Borel isomorphism”, Fund. Math., 108:2 (1980), 83–88 | MR | Zbl

[22] Medvedev S. V., “Topologicheskie kharakteristiki prostranstv $Q(k)$ i $Q\times B(k)$”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 1, 47–49 | Zbl

[23] Aleksandrov P. S., Lyapunov A. A., “Lyudmila Vsevolodovna Keldysh”, UMN, 10:2 (1955), 217–223 | MR