On absolute completeness of systems of exponentials on a~closed interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 303-315
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Lambda=\{\lambda_i\}$ be a sequence of points in the complex plane, and $M=\{m_i\}$ a sequence of positive numbers. Problem: under what relations between $\Lambda$ and $M$ can any function in $C[a,b]$ be approximated in the uniform norm by finite linear combinations $\sum a_ie^{\lambda_ix}$ of exponentials with the coefficient restriction $|a_i|\leqslant C_fm_i$. Here $C_f$ depends only on $f$. 
An exact solution of the problem is given under the assumption that $\big|\frac{\operatorname{Im}\lambda_i}{\operatorname{Re}\lambda_i}\big|\leqslant\text{Const}$.
Bibliography: 26 titles.
			
            
            
            
          
        
      @article{SM_1988_59_2_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {On absolute completeness of systems of exponentials on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {303--315},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/}
}
                      
                      
                    I. F. Krasichkov-Ternovskii. On absolute completeness of systems of exponentials on a~closed interval. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 303-315. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/
