On absolute completeness of systems of exponentials on a closed interval
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 303-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda=\{\lambda_i\}$ be a sequence of points in the complex plane, and $M=\{m_i\}$ a sequence of positive numbers. Problem: under what relations between $\Lambda$ and $M$ can any function in $C[a,b]$ be approximated in the uniform norm by finite linear combinations $\sum a_ie^{\lambda_ix}$ of exponentials with the coefficient restriction $|a_i|\leqslant C_fm_i$. Here $C_f$ depends only on $f$. An exact solution of the problem is given under the assumption that $\big|\frac{\operatorname{Im}\lambda_i}{\operatorname{Re}\lambda_i}\big|\leqslant\text{Const}$. Bibliography: 26 titles.
@article{SM_1988_59_2_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {On absolute completeness of systems of exponentials on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {303--315},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - On absolute completeness of systems of exponentials on a closed interval
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 303
EP  - 315
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/
LA  - en
ID  - SM_1988_59_2_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T On absolute completeness of systems of exponentials on a closed interval
%J Sbornik. Mathematics
%D 1988
%P 303-315
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/
%G en
%F SM_1988_59_2_a2
I. F. Krasichkov-Ternovskii. On absolute completeness of systems of exponentials on a closed interval. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 303-315. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a2/

[1] Muntz C. H., Über den Approximationssatz von Weirstrass, H. A. Schwartz Festschrift, Berlin, 1914, 303–312

[2] Szȧsz O., “Über dis approximation stetiger Funktionen dürch lineare Aggregate von Potenzen”, Math. Ann., 77 (1916), 482–496 | DOI | MR

[3] Luxemburg W. A. J., Korevaar J., “Entire functions and Müntz–Szász type approximation”, Transactions Amer. Math. Soc., 157 (1971), 23–37 | DOI | MR | Zbl

[4] Beurling A., Malliavin P., “On Fourier transforms of measures with compact support”, Acta Mathematica, 107:3–4 (1962), 291–309 | DOI | MR | Zbl

[5] Beurling A., Malliavin P., “On the closure of characters and the zeros of entire functions”, Acta Mathematica, 118:1–4 (1967), 79–94 | DOI | MR

[6] Kahane J. P., Travaux de Beurling et Malliavin, Seminaire Bourbaki, 14-e annee, 1961–1962, expose 225

[7] Redheffer R., “Two consequences of the Beurling–Malliavin theory”, Proc. Amer. Math. Soc., 36:1 (1972), 116–122 | DOI | MR | Zbl

[8] Davis Ph., Ky Fan, “Complete sequences and approximation in normed linear Spaces”, Duke Math. J., 24:2, 183–192 | DOI | MR | Zbl

[9] Stafney J. A., “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0,1]$”, Duke Math. J., 34:3 (1967), 393–396 | DOI | MR | Zbl

[10] Khavinson S. Ya., “Dopustimye velichiny koeffitsientov mnogochlenov pri ravnomernoi approksimatsii nepreryvnykh funktsii”, Matem. zametki, 6:5 (1969), 619–625 | Zbl

[11] Khavinson S. Ya., “O ponyatii polnoty, uchityvayuschei velichiny koeffitsientov approksimiruyuschikh polinomov”, Izv. AN ArmSSR, ser. matem., 6:2–3 (1971), 221–233

[12] Gurarii V. I., Meletidi M. A., “Ob otsenkakh koeffitsientov polinomov, approksimiruyuschikh nepreryvnye funktsii”, Funktsion. analiz i ego pril., 5:1 (1971), 73–75 | MR | Zbl

[13] Golitschek M., Permissible bounds on the coefficients of generalized polynomials, Proc. of a conference on Approximation theory, Academic Press, Austin, Texas, N.Y., 1973 | MR

[14] Golitschek M., Leviatan D., “Permissible bounds on the coefficients of approximating polynomials with real or complex exponents”, Journ. Math. Analysis and Applications., 60:1 (1977), 123–128 | DOI | MR

[15] Muradyan O. A., Khavinson S. Ya., “O velichinakh koeffitsientov mnogochlenov v approksimatsionnoi teoreme Veiershtrassa”, Matem. zametki, 22:2 (1977), 269–276 | MR | Zbl

[16] Muradyan O. A., “O roste koeffitsientov approksimiruyuschikh agregatov v teoreme Myuntsa”, Izv. AN ArmSSR, ser. matem., 8:1 (1973), 70–87 | MR

[17] Trigub R. M., “O priblizhenii funktsii mnogochlenami so spetsialnymi koeffitsientami”, Izv. vyssh. uch. zavedenii. Matematika, 1977, no. 1, 93–99 | MR | Zbl

[18] Napalkov V. V., “Approksimatsiya funktsii mnogikh peremennykh s uchetom rosta koeffitsientov approksimiruyuschikh agregatov”, Matem. sb., 111(153) (1980), 144–156 | MR | Zbl

[19] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[20] Cartwright M. L., “On functions which are regular and of finite order in an angle”, Proc. Lond. Math. Soc., 38:2–3 (1934), 158–179 | Zbl

[21] Cartwright M. L., “Some uniquess theorems”, Proc. Lond. Math. Soc., 41 (1936), 33–47 | DOI | Zbl

[22] Boas R. Ph., Entire functions, Academic Press, N.Y., 1954 | Zbl

[23] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[24] Krasichkov-Ternovskii I. F., “Odna geometricheskaya lemma, poleznaya v teorii tselykh funktsii, i teoremy tipa Levinsona”, Matem. zametki, 24:4 (1978), 531–546 | MR | Zbl

[25] Levinson N., Gap and density theorems, Amer. Math. Soc Colloquium publ., N.Y., 1940 | MR | Zbl

[26] Macintire A. T., “Laplace transformation and integral functions”, Proc. Lond. Math. Soc., Ser. 2, 45:1 (1938), 1–20 | DOI