The theory of singular perturbations in the case of spectral singularities of a limit operator
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 541-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method of asymptotic integration is developed – the method of regularization – in the case when the spectrum of the variable limit operator is zero at isolated points. To describe the singular dependence of a solution on the perturbation, additional independent variables are introduced; the space of resonance-free solutions is introduced, in which the coefficients of regularized series (the solution of the extended problem) are defined. Asymptotic convergence of the series thus obtained to the exact solution of the original singularly perturbed problem is proved. Bibliography: 14 titles.
@article{SM_1988_59_2_a16,
     author = {A. G. Eliseev and S. A. Lomov},
     title = {The theory of singular perturbations in the case of spectral singularities of a~limit operator},
     journal = {Sbornik. Mathematics},
     pages = {541--555},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - S. A. Lomov
TI  - The theory of singular perturbations in the case of spectral singularities of a limit operator
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 541
EP  - 555
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/
LA  - en
ID  - SM_1988_59_2_a16
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A S. A. Lomov
%T The theory of singular perturbations in the case of spectral singularities of a limit operator
%J Sbornik. Mathematics
%D 1988
%P 541-555
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/
%G en
%F SM_1988_59_2_a16
A. G. Eliseev; S. A. Lomov. The theory of singular perturbations in the case of spectral singularities of a limit operator. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 541-555. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/

[1] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[2] Ryzhikh A. D., “Asimptoticheskoe integrirovanie uravnenii v banakhovykh prostranstvakh”, Tr. MEI, 499 (1980), 159–161 | MR | Zbl

[3] Eliseev A. G., Lomov S. A., “Teoriya vozmuschenii v banakhovom prostranstve”, DAN, 264:1 (1982), 34–38 | MR | Zbl

[4] Lomov S. A., “Ravnomernye asimptoticheskie razlozheniya odnoi zadachi s tochkoi povorota”, Dokl. nauchno-tekhn. konf., sektsiya matem., MEI, M., 1969, 42–50

[5] Lomov S. A., “Asimptoticheskoe integrirovanie pri izmenenii kharaktera spektra”, Tr. MEI, 357 (1978), 56–62 | MR | Zbl

[6] Bobochko V. N., Lomov S. A., “Vnutrennii pogranichnyi sloi”, Tr. MEI, 499 (1980), 57–60 | MR | Zbl

[7] Rasschepkina N. A., Asimptoticheskoe integrirovanie zadachi Koshi v usloviyakh nestabilnosti spektra, Metody malogo parametra i ikh prilozhenie, Minsk, 1982

[8] Bobochko V. N., “Zadacha Valle–Pussena dlya sistemy singulyarno vozmuschennykh differentsialnykh uravnenii s nestabilnym spektrom predelnogo operatora”, Ukr. matem. zhurn., XVII:2 (1984), 34–45

[9] Dzyadyk V. K., “Nekotorye spetsialnye funktsii i ikh rol pri reshenii neodnorodnykh differentsialnykh uravnenii s tochkoi povorota”, Teoriya funktsii i ee prilozheniya, Naukova dumka, Kiev, 1979 | Zbl

[10] Dzyadyk S. Yu., “Asimptoticheskoe predstavlenie reshenii singulyarno vozmuschennykh differentsialnykh uravnenii s tochkoi povorota”, Teoriya funktsii i ee prilozheniya, Naukova dumka, Kiev, 1979

[11] Lomov S. A., “Asimptoticheskie resheniya singulyarno vozmuschennykh zadach”, DAN, 265:3 (1982), 529–532 | MR

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[13] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1979 | MR | Zbl

[14] Lioville J., “Second memoire sur le development des fonctions en series dont divers termes sont assujettis, a une meme equation”, J. Math. Pure Appl., 2 (1837), 16–35