The theory of singular perturbations in the case of spectral singularities of a~limit operator
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 541-555

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of asymptotic integration is developed – the method of regularization – in the case when the spectrum of the variable limit operator is zero at isolated points. To describe the singular dependence of a solution on the perturbation, additional independent variables are introduced; the space of resonance-free solutions is introduced, in which the coefficients of regularized series (the solution of the extended problem) are defined. Asymptotic convergence of the series thus obtained to the exact solution of the original singularly perturbed problem is proved. Bibliography: 14 titles.
@article{SM_1988_59_2_a16,
     author = {A. G. Eliseev and S. A. Lomov},
     title = {The theory of singular perturbations in the case of spectral singularities of a~limit operator},
     journal = {Sbornik. Mathematics},
     pages = {541--555},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - S. A. Lomov
TI  - The theory of singular perturbations in the case of spectral singularities of a~limit operator
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 541
EP  - 555
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/
LA  - en
ID  - SM_1988_59_2_a16
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A S. A. Lomov
%T The theory of singular perturbations in the case of spectral singularities of a~limit operator
%J Sbornik. Mathematics
%D 1988
%P 541-555
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/
%G en
%F SM_1988_59_2_a16
A. G. Eliseev; S. A. Lomov. The theory of singular perturbations in the case of spectral singularities of a~limit operator. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 541-555. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a16/