$K$-homology of $C^*$-algebras
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 533-540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functor algebraically dual to the operator $K$-functor is constructed on the category of $C^*$-algebras, and the author shows that it defines a homology theory on this category. The author also proves that it coincides with Kasparov's homology $K$-functor on a large class of $C^*$-algebras, including commutative $C^*$-algebras. This functor is used to describe a class of homotopy invariant higher signatures. Bibliography: 10 titles.
@article{SM_1988_59_2_a15,
     author = {V. M. Manuilov},
     title = {$K$-homology of $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {533--540},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a15/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - $K$-homology of $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 533
EP  - 540
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a15/
LA  - en
ID  - SM_1988_59_2_a15
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T $K$-homology of $C^*$-algebras
%J Sbornik. Mathematics
%D 1988
%P 533-540
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a15/
%G en
%F SM_1988_59_2_a15
V. M. Manuilov. $K$-homology of $C^*$-algebras. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 533-540. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a15/

[1] Brown L., Douglas R., Fillmore P., “Extensions of $C^*$-algebras and $K$-homology”, Ann. of Math., 105 (1977), 265–324 | DOI | MR | Zbl

[2] Kasparov G. G., “Topologicheskie invarianty ellipticheskikh operatorov. I: $K$-gomologii”, Izv. AN SSSR. Ser. matem., 39 (1975), 796–836 | MR

[3] Atiyah M. F., “Global theory of elliptic operators”, Proc. Internat. Conf. on Functional Analysis and related topics (Tokyo, 1969), Univ. of Tokyo Press, Tokyo, 1970, 21–30 | MR

[4] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR. Ser. matem., 44 (1980), 571–636 | MR | Zbl

[5] Uaitkhed Dzh., Noveishie dostizheniya v teorii gomotopii, Mir, M., 1974 | MR

[6] Rosenberg J., Schochet C., The Künneth and the universal coefficient theorem for Kasparov's generalized $K$-functor, Preprint MSRI 002-85-11, MSRI, Berkeley, 1984

[7] Maklein S., Gomologiya, Mir, M., 1966

[8] Schochet C., “Topological methods for $C^*$-algebras. III: axiomatic homology”, Pacific J. Math., 114 (1984), 399–445 | MR | Zbl

[9] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I. Ratsionalnye invarianty”, Izv. AN SSSR. Ser. matem., 34 (1970), 501–514 | MR | Zbl

[10] Mischenko A. S., Solovev Yu. P., “Predstavleniya banakhovykh algebr i formuly tipa Khirtsebrukha”, Matem. sb., 111(153) (1980), 209–226 | Zbl