Duality of multiobjective problems
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 515-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the duality of multiobjective problems is studied with the help of the apparatus of conjugate multivalued mappings introduced by the author. A duality theory, apparently of independent interest, is first developed for multivalued mappings. This theory is then used to get dual relations in multiobjective problems. Bibliography: 19 titles.
@article{SM_1988_59_2_a14,
     author = {A. Ya. Azimov},
     title = {Duality of multiobjective problems},
     journal = {Sbornik. Mathematics},
     pages = {515--531},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a14/}
}
TY  - JOUR
AU  - A. Ya. Azimov
TI  - Duality of multiobjective problems
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 515
EP  - 531
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a14/
LA  - en
ID  - SM_1988_59_2_a14
ER  - 
%0 Journal Article
%A A. Ya. Azimov
%T Duality of multiobjective problems
%J Sbornik. Mathematics
%D 1988
%P 515-531
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a14/
%G en
%F SM_1988_59_2_a14
A. Ya. Azimov. Duality of multiobjective problems. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 515-531. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a14/

[1] Pshenichnyi B. N., “Dvoistvennyi metod v ekstremalnykh zadachakh”, Kibernetika, 1965, no. 3, 89–95

[2] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, UMN, 23:6 (1968), 51–116 | MR | Zbl

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[4] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR | Zbl

[5] Gros C., “Generalization of Fenchel's Duality Theorem for Convex Vector Optimization”, Eur. J. Oper. Res., 2 (1978), 368–376 | DOI | MR | Zbl

[6] Jahn J., “Duality in Vector Optimization”, Math. Prog., 25 (1983), 343–353 | DOI | MR | Zbl

[7] Tanino T., Sawaragi Y., “Conjugate Maps and Duality in Multiobjective Optimization”, JOTA, 31:4 (1980), 473–499 | DOI | MR | Zbl

[8] Kawasaki H., “A Duality Theorem in Multiobjective Nonlinear Programming”, Math. Oper. Res., 7:1 (1982), 95–110 | DOI | MR | Zbl

[9] Azimov A. Ya., “Dvoistvennost v zadachakh vektornoi optimizatsii”, DAN SSSR, 265:5 (1982), 1033–1037 | MR | Zbl

[10] Azimov A. Ya., “Teoremy dvoistvennosti dlya mnogokriterialnykh zadach”, DAN SSSR, 280:1 (1985), 11–15 | MR

[11] Azimov A. Ya., “Duality in Nonconvex Problems of Vector Optimization”, Problems of Control and Information Theory, 12:3 (1983), 209–218 | MR | Zbl

[12] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[13] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR

[14] Peressini A. L., Ordered Topological Vector Spaces, New York, 1967 | MR | Zbl

[15] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | MR | Zbl

[16] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[17] Rubinov A. M., Superlineinye mnogoznachnye otobrazheniya, Nauka, L., 1980 | MR

[18] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[19] Hartley R., “On Cone-efficiency, Cone-convexity and Cone-compactness”, SIAM J. Appl. Math., 34:2 (1978), 211–222 | DOI | MR | Zbl