Estimates of the singular numbers of the Carleson imbedding operator
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 497-514

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H^2$ be the Hardy class in the unit disc $D$ and $\mu$ a finite Borel measure in $D$. Carleson's theorem describes conditions on $\mu$ under which the corresponding imbedding operator $J\colon H^2\to L_2(\mu)$ (the Carleson operator) is bounded. From this theorem follows a criterion for compactness of $J$ in terms of $\mu$. This paper is devoted to further study of the Carleson operator. Almost sharp upper bounds on the singular numbers of $J$ are presented in terms of the intensity of $\mu$. For measures whose support is a set of nonzero linear measure adjacent to the unit circle (and when certain other conditions), an asymptotic formula is obtained. A study is begun of measures whose support has just one point on the unit circle. A solution of a problem from the theory of rational approximation, posed by A. A. Gonchar, is also presented. Bibliography: 17 titles.
@article{SM_1988_59_2_a13,
     author = {O. G. Parfenov},
     title = {Estimates of the singular numbers of the {Carleson} imbedding operator},
     journal = {Sbornik. Mathematics},
     pages = {497--514},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Estimates of the singular numbers of the Carleson imbedding operator
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 497
EP  - 514
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/
LA  - en
ID  - SM_1988_59_2_a13
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Estimates of the singular numbers of the Carleson imbedding operator
%J Sbornik. Mathematics
%D 1988
%P 497-514
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/
%G en
%F SM_1988_59_2_a13
O. G. Parfenov. Estimates of the singular numbers of the Carleson imbedding operator. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 497-514. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/