Estimates of the singular numbers of the Carleson imbedding operator
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 497-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H^2$ be the Hardy class in the unit disc $D$ and $\mu$ a finite Borel measure in $D$. Carleson's theorem describes conditions on $\mu$ under which the corresponding imbedding operator $J\colon H^2\to L_2(\mu)$ (the Carleson operator) is bounded. From this theorem follows a criterion for compactness of $J$ in terms of $\mu$. This paper is devoted to further study of the Carleson operator. Almost sharp upper bounds on the singular numbers of $J$ are presented in terms of the intensity of $\mu$. For measures whose support is a set of nonzero linear measure adjacent to the unit circle (and when certain other conditions), an asymptotic formula is obtained. A study is begun of measures whose support has just one point on the unit circle. A solution of a problem from the theory of rational approximation, posed by A. A. Gonchar, is also presented. Bibliography: 17 titles.
@article{SM_1988_59_2_a13,
     author = {O. G. Parfenov},
     title = {Estimates of the singular numbers of the {Carleson} imbedding operator},
     journal = {Sbornik. Mathematics},
     pages = {497--514},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Estimates of the singular numbers of the Carleson imbedding operator
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 497
EP  - 514
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/
LA  - en
ID  - SM_1988_59_2_a13
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Estimates of the singular numbers of the Carleson imbedding operator
%J Sbornik. Mathematics
%D 1988
%P 497-514
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/
%G en
%F SM_1988_59_2_a13
O. G. Parfenov. Estimates of the singular numbers of the Carleson imbedding operator. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 497-514. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a13/

[1] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1970 | MR

[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[3] Fisher S. D., Charles Micchell, “The $n$-width of sets of analytic functions”, Duke Math. J., 47:4 (1980), 789–801 | DOI | MR | Zbl

[4] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh sistem”, Zap. nauchn. sem. LOMI, 115 (1982), 23–39 | MR | Zbl

[5] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh uravnenii”, Sib. matem. zhurn., 20:1 (1979), 3–22 | MR | Zbl

[6] Gonchar A. A., “Ratsionalnaya approksimatsiya”, Zap. nauchn. sem. LOMI, 81 (1978), 182–185

[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[8] Erokhin V. D., “O nailuchshei lineinoi approksimatsii funktsii, analiticheski prodolzhimykh s dannogo kontinuuma v dannuyu oblast”, UMN, 23 (1968), 93–135 | Zbl

[9] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[10] Parfenov O. G., “Poperechniki odnogo klassa analiticheskikh funktsii”, Matem. sb., 117(159) (1982), 279–285 | MR | Zbl

[11] Widom H., “Rational approximation and $n$-dimensional diameter”, J. Approxim. Theory, 5:2 (1972), 343–361 | DOI | MR | Zbl

[12] Uolsh Dzh. U., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[13] Adamyan V. M., Arov D. Z., Krein M. G., “Analiticheskie svoistva par Shmidta gankeleva operatora i obobschennaya zadacha Shura–Takagi”, Matem. sb., 86(128):1(9) (1971), 34–75 | MR | Zbl

[14] Peller V. V., “Operatory Gankelya klassa $\gamma_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problemy mazhoratsii operatorov)”, Matem. sb., 113(155) (1980), 538–581 | MR | Zbl

[15] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[16] Parfenov O. G., “Asimptotika singulyarnykh chisel operatorov vlozheniya nekotorykh klassov analiticheskikh funktsii”, Matem. sb., 115(157) (1981), 632–641 | MR | Zbl

[17] Zakharyuta V. P., Skiba N. I., “Otsenki $n$-poperechnikov nekotorykh klassov funktsii, analiticheskikh na rimanovykh poverkhnostyakh”, Matem. zametki, 19:6 (1976), 899–911 | MR | Zbl