The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 471-495
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with the questions of solvability and smoothness of weak solutions of the first boundary value problem for a parabolic equation of the form
$$
\mathscr Lu=\sum^n_{i,k=1}a_{ik}(t,x)u_{x_ix_k}-u_t=f(t,x).
$$ Bibliography: 18 titles.
@article{SM_1988_59_2_a12,
author = {Yu. A. Alkhutov and I. T. Mamedov},
title = {The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients},
journal = {Sbornik. Mathematics},
pages = {471--495},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - I. T. Mamedov TI - The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients JO - Sbornik. Mathematics PY - 1988 SP - 471 EP - 495 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/ LA - en ID - SM_1988_59_2_a12 ER -
%0 Journal Article %A Yu. A. Alkhutov %A I. T. Mamedov %T The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients %J Sbornik. Mathematics %D 1988 %P 471-495 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/ %G en %F SM_1988_59_2_a12
Yu. A. Alkhutov; I. T. Mamedov. The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 471-495. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/