The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 471-495

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the questions of solvability and smoothness of weak solutions of the first boundary value problem for a parabolic equation of the form $$ \mathscr Lu=\sum^n_{i,k=1}a_{ik}(t,x)u_{x_ix_k}-u_t=f(t,x). $$ Bibliography: 18 titles.
@article{SM_1988_59_2_a12,
     author = {Yu. A. Alkhutov and I. T. Mamedov},
     title = {The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients},
     journal = {Sbornik. Mathematics},
     pages = {471--495},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - I. T. Mamedov
TI  - The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 471
EP  - 495
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/
LA  - en
ID  - SM_1988_59_2_a12
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A I. T. Mamedov
%T The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients
%J Sbornik. Mathematics
%D 1988
%P 471-495
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/
%G en
%F SM_1988_59_2_a12
Yu. A. Alkhutov; I. T. Mamedov. The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 471-495. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a12/