Integrable symplectic structures on compact complex manifolds
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 459-469

Voir la notice de l'article provenant de la source Math-Net.Ru

The following question is studied. Suppose one is given a $2n$-dimensional compact complex manifold with holomorphic symplectic 2-form. Are there obstructions to the existence of $n$ independent meromorphic first integrals in involution, and if so, what are they like? The answer to this question is given for K3 surfaces, Beauville manifolds, and complex tori; in these cases there are obstructions of an analytic character. Whether there are any topological obstructions is an unsolved problem. Bibliography: 18 titles.
@article{SM_1988_59_2_a11,
     author = {D. G. Markushevich},
     title = {Integrable symplectic structures on compact complex manifolds},
     journal = {Sbornik. Mathematics},
     pages = {459--469},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/}
}
TY  - JOUR
AU  - D. G. Markushevich
TI  - Integrable symplectic structures on compact complex manifolds
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 459
EP  - 469
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/
LA  - en
ID  - SM_1988_59_2_a11
ER  - 
%0 Journal Article
%A D. G. Markushevich
%T Integrable symplectic structures on compact complex manifolds
%J Sbornik. Mathematics
%D 1988
%P 459-469
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/
%G en
%F SM_1988_59_2_a11
D. G. Markushevich. Integrable symplectic structures on compact complex manifolds. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/