Integrable symplectic structures on compact complex manifolds
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 459-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following question is studied. Suppose one is given a $2n$-dimensional compact complex manifold with holomorphic symplectic 2-form. Are there obstructions to the existence of $n$ independent meromorphic first integrals in involution, and if so, what are they like? The answer to this question is given for K3 surfaces, Beauville manifolds, and complex tori; in these cases there are obstructions of an analytic character. Whether there are any topological obstructions is an unsolved problem. Bibliography: 18 titles.
@article{SM_1988_59_2_a11,
     author = {D. G. Markushevich},
     title = {Integrable symplectic structures on compact complex manifolds},
     journal = {Sbornik. Mathematics},
     pages = {459--469},
     year = {1988},
     volume = {59},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/}
}
TY  - JOUR
AU  - D. G. Markushevich
TI  - Integrable symplectic structures on compact complex manifolds
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 459
EP  - 469
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/
LA  - en
ID  - SM_1988_59_2_a11
ER  - 
%0 Journal Article
%A D. G. Markushevich
%T Integrable symplectic structures on compact complex manifolds
%J Sbornik. Mathematics
%D 1988
%P 459-469
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/
%G en
%F SM_1988_59_2_a11
D. G. Markushevich. Integrable symplectic structures on compact complex manifolds. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a11/

[1] Fomenko A. T., Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy., Izd-vo MGU, M., 1983 | Zbl

[2] Adler M., van Moerbeke P., “The Algebraic Integrability of Geodesic Flow on $\text{SO}(4)$”, Invent. Math., 67:2 (1982), 297–332 | DOI | MR

[3] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike. I, II”, Funktsion. analiz i ego pril., 16:3 (1982), 30–41 ; 17:1 (1983), 8–23 | MR | Zbl | MR | Zbl

[4] Beauville A., “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Differential Geometry, 18 (1983), 755–782 | MR | Zbl

[5] Mukai S., “Symplectic structure of the moduli space of shaeves on an abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[7] Algebraicheskie poverkhnosti, Tr. MIAN, LXXV, Nauka, M., 1965 | MR | Zbl

[8] Siu Y.-T., “Every K3 surface is Kähler”, Invent. Math., 73:1 (1983), 139–150 | DOI | MR | Zbl

[9] Burns D., Rapoport M., “On the Torelli problems for kählerian K3 surfaces”, Ann. Sci. Ecole Norm. Sup., 8 (1975), 235–274 | MR

[10] Griffits F., Kharris D., Printsipy algebraicheskoi geometrii, T. 1, 2, Mir, M., 1982 | MR

[11] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[12] Bogomolov F. A., “Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1227–1287 | MR | Zbl

[13] Mehta V. B., Ramanathan A., “Semistable sheaves on projective varieties and their restriction to curves”, Math. Ann., 258 (1982), 213–223 | DOI | MR

[14] Yau S. T., “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equations. I”, Comm. Pure Appl. Math., 31 (1978), 339–411 | DOI | MR | Zbl

[15] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957

[16] Kobayashi K., “First Chern class and holomorphic tensor fields”, J. Math. Soc. Japan, 32:2 (1980), 325–329 | DOI | MR | Zbl

[17] Kodaira K., “On the structure of compact complex analytic surfaces. I, II, III, IV”, Amer. J. Math., 86 (1964), 751–798 ; 88 (1966), 682–721 ; 90 (1968), 55–83 ; 90 (1968), 170–192 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[18] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981