On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 287-302

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained of the type in Tikhonov's theorem which, when satisfied, make possible passage to the limit on the small parameter $\varepsilon$. Estimates in Hölder spaces of functions are obtained for the solution of the problem. The author determines how the rate of convergence of the solution to the limit function as $\varepsilon\to0$ depends on the smoothness of the functions contained in the equations and the boundary and initial conditions. Cases of both finite and infinite time intervals are considered. Bibliography: 14 titles.
@article{SM_1988_59_2_a1,
     author = {V. G. Borisov},
     title = {On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$},
     journal = {Sbornik. Mathematics},
     pages = {287--302},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/}
}
TY  - JOUR
AU  - V. G. Borisov
TI  - On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 287
EP  - 302
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/
LA  - en
ID  - SM_1988_59_2_a1
ER  - 
%0 Journal Article
%A V. G. Borisov
%T On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$
%J Sbornik. Mathematics
%D 1988
%P 287-302
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/
%G en
%F SM_1988_59_2_a1
V. G. Borisov. On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 287-302. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/