On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 287-302
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are obtained of the type in Tikhonov's theorem which, when satisfied, make possible passage to the limit on the small parameter $\varepsilon$. Estimates in Hölder spaces of functions are obtained for the solution of the problem. The author determines how the rate of convergence of the solution to the limit function as $\varepsilon\to0$ depends on the smoothness of the functions contained in the equations and the boundary and initial conditions. Cases of both finite and infinite time intervals are considered.
Bibliography: 14 titles.
@article{SM_1988_59_2_a1,
author = {V. G. Borisov},
title = {On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$},
journal = {Sbornik. Mathematics},
pages = {287--302},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/}
}
TY - JOUR AU - V. G. Borisov TI - On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$ JO - Sbornik. Mathematics PY - 1988 SP - 287 EP - 302 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/ LA - en ID - SM_1988_59_2_a1 ER -
V. G. Borisov. On parabolic boundary value problems with a~small parameter on the derivatives with respect to~$t$. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 287-302. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a1/