The action of Hecke operators on nonhomogeneous theta series
Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 269-285
Cet article a éte moissonné depuis la source Math-Net.Ru
Explicit formulas are obtained which express the images of nonhomogeneous theta series of arbitrary integral nondegenerate quadratic forms in an even number of variables under the action of Hecke operators as linear combinations of theta series of the same type. Bibliography: 4 titles.
@article{SM_1988_59_2_a0,
author = {A. N. Andrianov},
title = {The action of {Hecke} operators on nonhomogeneous theta series},
journal = {Sbornik. Mathematics},
pages = {269--285},
year = {1988},
volume = {59},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_2_a0/}
}
A. N. Andrianov. The action of Hecke operators on nonhomogeneous theta series. Sbornik. Mathematics, Tome 59 (1988) no. 2, pp. 269-285. http://geodesic.mathdoc.fr/item/SM_1988_59_2_a0/
[1] Andrianov A. N., “Multiplikativnaya arifmetika zigelevykh modulyarnykh form”, UMN, 34:1 (1979), 67–135 | MR | Zbl
[2] Zhuravlev V. G., “Koltsa Gekke dlya nakryvayuschei simplekticheskoi gruppy”, Matem. sb., 121(163) (1983), 381–402 | MR | Zbl
[3] Zhuravlev V. G., “Eilerovy razlozheniya teta-preobrazovanii modulyarnykh form polutselogo vesa i ikh svoistva”, Matem. sb., 123(165) (1984), 174–194 | MR | Zbl
[4] Andrianov A. N., Maloletkin G. N., “Povedenie teta-ryadov roda $n$ neopredelennykh kvadratichnykh form pri modulyarnykh podstanovkakh”, Tr. MIAN, 148 (1978), 5–15 | MR | Zbl