@article{SM_1988_59_1_a8,
author = {K. N. Godev and R. D. Lazarov and V. L. Makarov and A. A. Samarskii},
title = {Homogeneous difference schemes for one-dimensional problems with generalized solutions},
journal = {Sbornik. Mathematics},
pages = {155--179},
year = {1988},
volume = {59},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/}
}
TY - JOUR AU - K. N. Godev AU - R. D. Lazarov AU - V. L. Makarov AU - A. A. Samarskii TI - Homogeneous difference schemes for one-dimensional problems with generalized solutions JO - Sbornik. Mathematics PY - 1988 SP - 155 EP - 179 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/ LA - en ID - SM_1988_59_1_a8 ER -
%0 Journal Article %A K. N. Godev %A R. D. Lazarov %A V. L. Makarov %A A. A. Samarskii %T Homogeneous difference schemes for one-dimensional problems with generalized solutions %J Sbornik. Mathematics %D 1988 %P 155-179 %V 59 %N 1 %U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/ %G en %F SM_1988_59_1_a8
K. N. Godev; R. D. Lazarov; V. L. Makarov; A. A. Samarskii. Homogeneous difference schemes for one-dimensional problems with generalized solutions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 155-179. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/
[1] Tikhonov A. N., Samarskii A. A., “Odnorodnye raznostnye skhemy vysokogo poryadka tochnosti”, DAN SSSR, 131:3 (1960), 514–517 | Zbl
[2] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, ZhVM i MF, 1:1 (1961), 5–63 | MR | Zbl
[3] Tikhonov A. N., Samarskii A. A., “Odnorodnye raznostnye skhemy vysokogo poryadka tochnosti na neravnomernykh setkakh”, ZhVM i MF, 1:3 (1961), 425–440 | Zbl
[4] Makarov V. L., Makarov I. L., Prikazchikov V. G., “Tochnye raznostnye skhemy i skhemy lyubogo poryadka tochnosti dlya sistem differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 15:7 (1979), 1194–1205 | MR | Zbl
[5] Burkhanov Sh. A., Makarov V. L., “O tochnykh i usechennykh raznostnykh skhemakh dlya obyknovennogo differentsialnogo uravneniya chetvertogo poryadka”, Differents. uravneniya, 20:9 (1984), 1502–1514 | MR | Zbl
[6] Bagmut I. G., “Raznostnye skhemy vysokogo poryadka tochnosti dlya uravnenii tipa Lezhandra”, ZhVM i MF, 12:3 (1972) | MR | Zbl
[7] Baloyan N. M., Molokovich Yu. M., “K voprosu o raznostnykh skhemakh vysokogo poryadka tochnosti dlya ODU s regulyarnoi osobennostyu”, Izv. VUZov. Matem., 1975, no. 7
[8] Makarov V. L., Gavrilyuk I. P., Luzhnykh V. M., “Tochnye i usechennye raznostnye skhemy dlya zadachi Shturma–Liuvillya s vyrozhdeniem”, Differents. uravneniya, 16:7 (1980), 1265–1275 | MR | Zbl
[9] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1973
[10] Fedorova O. A., “Variatsionno-raznostnaya skhema dlya odnomernogo uravneniya diffuzii”, Matem. zametki, 17:6 (1975), 893–898 | MR | Zbl
[11] Korneev V. G., “O tochnykh setochnykh skhemakh”, ZhVM i MF, 22:3 (1982), 646–654 | MR | Zbl
[12] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR