Homogeneous difference schemes for one-dimensional problems with generalized solutions
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 155-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact and truncated homogeneous difference schemes of arbitrary order of accuracy are constructed and investigated for the one-dimensional second-order equation $(k(x)u'(x))'-q(x)u(x)=-f(x)$, $0, with generalized solutions in $W_2^1$. Mathematical tools are developed for studying the accuracy of truncated difference schemes. It is assumed that $k(x)$ is a measurable function, while $q(x)$ and $f(x)$ are generalized derivatives of functions in the class $W_p^\lambda$, $0<\lambda\leqslant1$, $2\leqslant p<\infty$; this allows one to include the case in which $q(x)$ and $f(x)$ are $\delta$-functions. It is shown that truncated schemes of $m$th order have accuracy $O(h^{2(m+1)-n})$, where $h$ is the mesh step size and $n$ a number depending on the exponents $\lambda_q$, $\lambda_f$, $p_q$ and $p_f$. In the case of piecewise smooth coefficients $n=0$, and the estimates obtained coincide with results of the theory of homogeneous difference schemes of Tikhonov and Samarskii. Bibliography: 13 titles.
@article{SM_1988_59_1_a8,
     author = {K. N. Godev and R. D. Lazarov and V. L. Makarov and A. A. Samarskii},
     title = {Homogeneous difference schemes for one-dimensional problems with generalized solutions},
     journal = {Sbornik. Mathematics},
     pages = {155--179},
     year = {1988},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/}
}
TY  - JOUR
AU  - K. N. Godev
AU  - R. D. Lazarov
AU  - V. L. Makarov
AU  - A. A. Samarskii
TI  - Homogeneous difference schemes for one-dimensional problems with generalized solutions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 155
EP  - 179
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/
LA  - en
ID  - SM_1988_59_1_a8
ER  - 
%0 Journal Article
%A K. N. Godev
%A R. D. Lazarov
%A V. L. Makarov
%A A. A. Samarskii
%T Homogeneous difference schemes for one-dimensional problems with generalized solutions
%J Sbornik. Mathematics
%D 1988
%P 155-179
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/
%G en
%F SM_1988_59_1_a8
K. N. Godev; R. D. Lazarov; V. L. Makarov; A. A. Samarskii. Homogeneous difference schemes for one-dimensional problems with generalized solutions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 155-179. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/

[1] Tikhonov A. N., Samarskii A. A., “Odnorodnye raznostnye skhemy vysokogo poryadka tochnosti”, DAN SSSR, 131:3 (1960), 514–517 | Zbl

[2] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, ZhVM i MF, 1:1 (1961), 5–63 | MR | Zbl

[3] Tikhonov A. N., Samarskii A. A., “Odnorodnye raznostnye skhemy vysokogo poryadka tochnosti na neravnomernykh setkakh”, ZhVM i MF, 1:3 (1961), 425–440 | Zbl

[4] Makarov V. L., Makarov I. L., Prikazchikov V. G., “Tochnye raznostnye skhemy i skhemy lyubogo poryadka tochnosti dlya sistem differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 15:7 (1979), 1194–1205 | MR | Zbl

[5] Burkhanov Sh. A., Makarov V. L., “O tochnykh i usechennykh raznostnykh skhemakh dlya obyknovennogo differentsialnogo uravneniya chetvertogo poryadka”, Differents. uravneniya, 20:9 (1984), 1502–1514 | MR | Zbl

[6] Bagmut I. G., “Raznostnye skhemy vysokogo poryadka tochnosti dlya uravnenii tipa Lezhandra”, ZhVM i MF, 12:3 (1972) | MR | Zbl

[7] Baloyan N. M., Molokovich Yu. M., “K voprosu o raznostnykh skhemakh vysokogo poryadka tochnosti dlya ODU s regulyarnoi osobennostyu”, Izv. VUZov. Matem., 1975, no. 7

[8] Makarov V. L., Gavrilyuk I. P., Luzhnykh V. M., “Tochnye i usechennye raznostnye skhemy dlya zadachi Shturma–Liuvillya s vyrozhdeniem”, Differents. uravneniya, 16:7 (1980), 1265–1275 | MR | Zbl

[9] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1973

[10] Fedorova O. A., “Variatsionno-raznostnaya skhema dlya odnomernogo uravneniya diffuzii”, Matem. zametki, 17:6 (1975), 893–898 | MR | Zbl

[11] Korneev V. G., “O tochnykh setochnykh skhemakh”, ZhVM i MF, 22:3 (1982), 646–654 | MR | Zbl

[12] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR