Homogeneous difference schemes for one-dimensional problems with generalized solutions
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 155-179
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact and truncated homogeneous difference schemes of arbitrary order of accuracy are constructed and investigated for the one-dimensional second-order equation $(k(x)u'(x))'-q(x)u(x)=-f(x)$, $0$, with generalized solutions in $W_2^1$. Mathematical tools are developed for studying the accuracy of truncated difference schemes. It is assumed that $k(x)$ is a measurable function, while $q(x)$ and $f(x)$ are generalized derivatives of functions in the class $W_p^\lambda$, $0\lambda\leqslant1$, $2\leqslant p\infty$; this allows one to include the case in which $q(x)$ and $f(x)$ are $\delta$-functions. It is shown that truncated schemes of $m$th order have accuracy $O(h^{2(m+1)-n})$, where $h$ is the mesh step size and $n$ a number depending on the exponents $\lambda_q$, $\lambda_f$, $p_q$ and $p_f$. In the case of piecewise smooth coefficients $n=0$, and the estimates obtained coincide with results of the theory of homogeneous difference schemes of Tikhonov and Samarskii.
Bibliography: 13 titles.
@article{SM_1988_59_1_a8,
author = {K. N. Godev and R. D. Lazarov and V. L. Makarov and A. A. Samarskii},
title = {Homogeneous difference schemes for one-dimensional problems with generalized solutions},
journal = {Sbornik. Mathematics},
pages = {155--179},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/}
}
TY - JOUR AU - K. N. Godev AU - R. D. Lazarov AU - V. L. Makarov AU - A. A. Samarskii TI - Homogeneous difference schemes for one-dimensional problems with generalized solutions JO - Sbornik. Mathematics PY - 1988 SP - 155 EP - 179 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/ LA - en ID - SM_1988_59_1_a8 ER -
%0 Journal Article %A K. N. Godev %A R. D. Lazarov %A V. L. Makarov %A A. A. Samarskii %T Homogeneous difference schemes for one-dimensional problems with generalized solutions %J Sbornik. Mathematics %D 1988 %P 155-179 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/ %G en %F SM_1988_59_1_a8
K. N. Godev; R. D. Lazarov; V. L. Makarov; A. A. Samarskii. Homogeneous difference schemes for one-dimensional problems with generalized solutions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 155-179. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a8/