On the question of universal integrability of bounded functions
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 75-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various procedures are considered for integration of bounded real-valued functions with respect to finitely additive measures on a semi-algebra of sets. A criterion is established for the indefinite Darboux integrals of a bounded function to coincide on the family of all positive finitely additive measures: a bounded function is universally integrable if and only if it belongs to the closure, in the metric of uniform convergence, of the linear span of the family of all characteristic functions of sets in the semi-algebra. A representation of the indefinite Darboux integral is obtained for such bounded functions. For arbitrary bounded functions a construction is proposed for a multivalued indefinite integral with respect to a positive finitely additive measure, and some of the properties of the construction are established. In particular, the multivalued integral of an arbitrary bounded function with respect to a positive countably additive measure consists only of countably additive measures of bounded variation, while the multivalued integral with respect to a purely finitely additive positive measure consists only of purely finitely additive measures. The dependence of the multivalued integral on the bounded function is continuous in the sense of the natural metric for the space of nonempty order intervals in the family of finitely additive measures of bounded variation. Bibliography: 7 titles.
@article{SM_1988_59_1_a4,
     author = {A. G. Chentsov},
     title = {On the question of universal integrability of bounded functions},
     journal = {Sbornik. Mathematics},
     pages = {75--94},
     year = {1988},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a4/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On the question of universal integrability of bounded functions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 75
EP  - 94
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a4/
LA  - en
ID  - SM_1988_59_1_a4
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On the question of universal integrability of bounded functions
%J Sbornik. Mathematics
%D 1988
%P 75-94
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a4/
%G en
%F SM_1988_59_1_a4
A. G. Chentsov. On the question of universal integrability of bounded functions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a4/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[2] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[3] Chentsov A. G., Integrirovanie po additivnym funktsiyam mnozhestv, Rukopis dep. v VINITI 19.04.83, No 2069-83 Dep., UPI im. S. M. Kirova, Sverdlovsk, 1983

[4] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[5] Chentsov A. G., Poryadkovaya struktura skalyarnykh konechno-additivnykh mer, Rukopis dep. v VINITI 05.12.83, No 6590-83 Dep., IMM UNTs AN SSSR, Sverdlovsk, 1983

[6] Yoside K., Hewitt E. H., “Finitelly additive measures”, Trans. Amer. Soc., 72 (1952), 44–66 | MR

[7] Chentsov A. G., Prilozheniya teorii mery k zadacham upravleniya, SredneUralskoe knizhnoe izd-vo, Sverdlovsk, 1985