Singular multiparameter differential operators. Expansion theorems
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 53-73

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiparameter spectral problem of the form $$ l_j(y_j)+\sum_{k=1}^n\lambda_kb_{jk}(x_j)y_j(x_j)=0,\quad-\infty\leqslant a_j\leqslant+\infty,\quad j=1,2,\dots,n, $$ is considered, where \begin{gather*} l_j(y_j)=(-1)^{k_j}(p_{j0}(x_j)y_j^{(k_j)}(x_j))^{(k_j)}+(-1)^{k_j-1}(p_{j1}(x_j)y_j^{(k_j-1)}(x_j))^{(k_j-1)}+\dots+ \\ +p_{j,2k_j}(x_j)y_j(x_j), \\ p_{js_j}\in C^{(2k_j-s_j)}((a_j,b_j)),\qquad b_{jk}\in C((a_j,b_j)),\qquad p_{j0}(x_j)\ne0, \end{gather*} and at least for one of these equations the endpoints $a_j$ and $b_j$ are singular, $$ s_j=0,1,\dots,2k_j,\qquad j=1,2,\dots,n,\qquad k=1,2,\dots,n, $$ all the functions $p_{js_j}$ and $b_{jk}$ are real-valued, and the following natural independence condition holds: $$ \det\{b_{jk}(x_j)\}_{j,k=1}^n>0,\qquad x_j\in(a_j,b_j). $$ The Parseval equality and the corresponding theorem on expansion in the eigenfunctions of this multiparameter problem are proved. The main results give, in a particular case, the solution of the problem on singular multiparameter operators of the Sturm–Liouville type on $(-\infty,\infty)$ posed by P. J. Browne in 1974. Bibliography: 33 titles.
@article{SM_1988_59_1_a3,
     author = {G. A. Isaev},
     title = {Singular multiparameter differential operators. {Expansion} theorems},
     journal = {Sbornik. Mathematics},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/}
}
TY  - JOUR
AU  - G. A. Isaev
TI  - Singular multiparameter differential operators. Expansion theorems
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 53
EP  - 73
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/
LA  - en
ID  - SM_1988_59_1_a3
ER  - 
%0 Journal Article
%A G. A. Isaev
%T Singular multiparameter differential operators. Expansion theorems
%J Sbornik. Mathematics
%D 1988
%P 53-73
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/
%G en
%F SM_1988_59_1_a3
G. A. Isaev. Singular multiparameter differential operators. Expansion theorems. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 53-73. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/