Singular multiparameter differential operators. Expansion theorems
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 53-73
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiparameter spectral problem of the form
$$
l_j(y_j)+\sum_{k=1}^n\lambda_kb_{jk}(x_j)y_j(x_j)=0,\quad-\infty\leqslant a_j\leqslant+\infty,\quad j=1,2,\dots,n,
$$
is considered, where
\begin{gather*}
l_j(y_j)=(-1)^{k_j}(p_{j0}(x_j)y_j^{(k_j)}(x_j))^{(k_j)}+(-1)^{k_j-1}(p_{j1}(x_j)y_j^{(k_j-1)}(x_j))^{(k_j-1)}+\dots+
\\
+p_{j,2k_j}(x_j)y_j(x_j),
\\
p_{js_j}\in C^{(2k_j-s_j)}((a_j,b_j)),\qquad b_{jk}\in C((a_j,b_j)),\qquad p_{j0}(x_j)\ne0,
\end{gather*}
and at least for one of these equations the endpoints $a_j$ and $b_j$ are singular,
$$
s_j=0,1,\dots,2k_j,\qquad j=1,2,\dots,n,\qquad k=1,2,\dots,n,
$$
all the functions $p_{js_j}$ and $b_{jk}$ are real-valued, and the following natural independence condition holds:
$$
\det\{b_{jk}(x_j)\}_{j,k=1}^n>0,\qquad x_j\in(a_j,b_j).
$$ The Parseval equality and the corresponding theorem on expansion in the eigenfunctions of this multiparameter problem are proved. The main results give, in a particular case, the solution of the problem on singular multiparameter operators of the Sturm–Liouville type on $(-\infty,\infty)$ posed by P. J. Browne in 1974.
Bibliography: 33 titles.
@article{SM_1988_59_1_a3,
author = {G. A. Isaev},
title = {Singular multiparameter differential operators. {Expansion} theorems},
journal = {Sbornik. Mathematics},
pages = {53--73},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/}
}
G. A. Isaev. Singular multiparameter differential operators. Expansion theorems. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 53-73. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a3/