The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 39-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article it is shown that the Hausdorff domain (numerical range) $W(A)=\{(Ax,x):\|x\|=1\}$ is the union of the numerical ranges of a concretely constructed family of matrices acting in $\mathbf C^2$. In other words, a certain method of descent of the numerical range is justified. This method is used to study localizations for the spectra of arbitrary matrices. As a result, generalizations are discovered for results of Johnson, Gershgorin–Solov'ev, Hirsch and Bendixson, and Mees and Atherton. Bibliography: 20 titles.
@article{SM_1988_59_1_a2,
     author = {A. A. Abdurakhmanov},
     title = {The geometry of the {Hausdorff} domain in localization problems for the spectrum of arbitrary matrices},
     journal = {Sbornik. Mathematics},
     pages = {39--51},
     year = {1988},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a2/}
}
TY  - JOUR
AU  - A. A. Abdurakhmanov
TI  - The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 39
EP  - 51
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a2/
LA  - en
ID  - SM_1988_59_1_a2
ER  - 
%0 Journal Article
%A A. A. Abdurakhmanov
%T The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices
%J Sbornik. Mathematics
%D 1988
%P 39-51
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a2/
%G en
%F SM_1988_59_1_a2
A. A. Abdurakhmanov. The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a2/

[1] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[2] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[3] Yusubov I. M., “O chislovoi oblasti operatora levogo sdviga”, Uch. zapiski Azerb. Gos. un-ta, ser. fiz.-matem. nauk, 1979, 28–33 | MR

[4] Uilkinson Dzh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[5] Dezoer Ch., Vidyasagar M., Sistemy s obratnoi svyazyu: vkhod-vykhodnye sootnosheniya, Nauka, M., 1983

[6] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee primeneniya, IL, M., 1960 | MR

[7] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[8] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984 | Zbl

[9] Meiman N. N., “Nekotorye voprosy raspolozheniya nulei polinomov”, UMN, 4:6(34) (1949), 155–188

[10] Babitskii V. I., Teoriya vibroudarnykh sistem, Nauka, M., 1978 | MR

[11] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[12] Zorich V. A., Matematicheskii analiz, ch. II, Nauka, M., 1984 | MR

[13] Johnson G. R., “A gersgorin inclusion set for the field of values of a finite matrix”, Proc. Amer. Math. Soc., 41 (1973), 57–60 | DOI | MR | Zbl

[14] Johnson G. R., “Gersgorin sets and the field of values”, J. of Math. and appl., 45 (1974), 416–419 | MR | Zbl

[15] Gershgorin S. A., “Über die abgrenzung der eigenwerte liner matrix”, Izv. AN SSSR. Ser. matem., 7 (1931), 749–754

[16] Solovev V. N., “Obobschenie teoremy Gershgorina”, Izv. AN SSSR. Ser. matem., 47 (1983), 1285–1302 | MR | Zbl

[17] Lumer G., “Semi-inner product spaces”, Trans. Amer. Math. Soc., 100 (1961), 29–43 | DOI | MR | Zbl

[18] Mees A. J., Atherton D. P., “Domains containing the field of values of a matrix”, Linear Algebra and appl., 26 (1979), 289–296 | DOI | MR | Zbl

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[20] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR