Extrinsic dimensions of tubular minimal hypersurfaces
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that every embedded minimal hypersurface in $R^{n+1}$ that is tubular with respect to some line has a bounded projection on that line for $n\geqslant3$. An estimate of the length of the projection is given, and it is shown that equality in this estimate can be attained only on a catenoid. Bibliography: 12 titles.
@article{SM_1988_59_1_a12,
     author = {A. D. Vedenyapin and V. M. Miklyukov},
     title = {Extrinsic dimensions of tubular minimal hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {237--245},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/}
}
TY  - JOUR
AU  - A. D. Vedenyapin
AU  - V. M. Miklyukov
TI  - Extrinsic dimensions of tubular minimal hypersurfaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 237
EP  - 245
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/
LA  - en
ID  - SM_1988_59_1_a12
ER  - 
%0 Journal Article
%A A. D. Vedenyapin
%A V. M. Miklyukov
%T Extrinsic dimensions of tubular minimal hypersurfaces
%J Sbornik. Mathematics
%D 1988
%P 237-245
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/
%G en
%F SM_1988_59_1_a12
A. D. Vedenyapin; V. M. Miklyukov. Extrinsic dimensions of tubular minimal hypersurfaces. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/