Extrinsic dimensions of tubular minimal hypersurfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is established that every embedded minimal hypersurface in $R^{n+1}$ that is tubular with respect to some line has a bounded projection on that line for $n\geqslant3$. An estimate of the length of the projection is given, and it is shown that equality in this estimate can be attained only on a catenoid.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1988_59_1_a12,
     author = {A. D. Vedenyapin and V. M. Miklyukov},
     title = {Extrinsic dimensions of tubular minimal hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {237--245},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/}
}
                      
                      
                    A. D. Vedenyapin; V. M. Miklyukov. Extrinsic dimensions of tubular minimal hypersurfaces. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/
