Extrinsic dimensions of tubular minimal hypersurfaces
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that every embedded minimal hypersurface in $R^{n+1}$ that is tubular with respect to some line has a bounded projection on that line for $n\geqslant3$. An estimate of the length of the projection is given, and it is shown that equality in this estimate can be attained only on a catenoid. Bibliography: 12 titles.
@article{SM_1988_59_1_a12,
     author = {A. D. Vedenyapin and V. M. Miklyukov},
     title = {Extrinsic dimensions of tubular minimal hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {237--245},
     year = {1988},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/}
}
TY  - JOUR
AU  - A. D. Vedenyapin
AU  - V. M. Miklyukov
TI  - Extrinsic dimensions of tubular minimal hypersurfaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 237
EP  - 245
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/
LA  - en
ID  - SM_1988_59_1_a12
ER  - 
%0 Journal Article
%A A. D. Vedenyapin
%A V. M. Miklyukov
%T Extrinsic dimensions of tubular minimal hypersurfaces
%J Sbornik. Mathematics
%D 1988
%P 237-245
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/
%G en
%F SM_1988_59_1_a12
A. D. Vedenyapin; V. M. Miklyukov. Extrinsic dimensions of tubular minimal hypersurfaces. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 237-245. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a12/

[1] Shiffman M., “On surfaces of stationary area bounded by two cireles, or convex curves, in parallel planes”, Ann. of Math., 63 (1956), 77–90 | DOI | MR | Zbl

[2] Nitsche J. C. C., “A uniqueness theorem of Bernstein, s type for minimal surfaces in cylindrical coordinates”, J. Math. Mech., 6 (1957), 859–864 | MR | Zbl

[3] Niche I. S. S., “O novykh rezultatakh v teorii minimalnykh poverkhnostei”, Matematika (sb. perevodov), 11:3 (1967), 37–100

[4] Miklyukov V. M., “O nekotorykh svoistvakh trubchatykh minimalnykh poverkhnostei v $R^n$”, DAN SSSR, 247:3 (1979), 549–552 | MR | Zbl

[5] Fomenko A. T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Tr. seminara po vekt. i tenz. analizu, 21, Izd-vo MGU, M., 1983, 3–12 | MR

[6] Nitsche J. C. C., “A characterization of the catenoid”, J. Math. Mech., 11 (1962), 293–302 | MR

[7] Schoen R., “Uniqueness, symmetry and embeddedness of minimal surfaces”, J. of Diff. Geom., 18 (1983), 791–809 | MR | Zbl

[8] Nitsche J. C. C., “A necessary criterion for the existence of certian minimal surfaces”, J. Math. Mech., 13 (1964), 659–666 | MR | Zbl

[9] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[10] Kobayasya Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. II, Nauka, M., 1981

[11] Fomenko A. T., “Algebraicheskaya struktura nekotorykh klassov vpolne integriruemykh gamiltonovykh sistem na algebrakh Li”, Gometr. teoriya funktsii i topol., Izd-vo Naukova dumka, Kiev, 1981, 85–126 | MR

[12] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR