Measurable selection theorems and probabilistic control models in general topological spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 25-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(\Omega,\mathscr F)$ be a measurable space, $P$ a finite measure on $\mathscr F$, and $X$ a $\sigma$-compact topological space (not necessarily metrizable); $\mathscr B(X)$ is the Baire $\sigma$-algebra of $X$ and $\mathbf B(X)$ the Borel $\sigma$-algebra. Let $\mathscr F^P$ be the completion of $\mathscr F$ with respect to the measure $P$ and $\sigma(\mathscr A(\mathscr F))$ the $\sigma$-algebra generated by the sets $\Delta\subseteq\Omega$ representable in the form $\Delta=\mathrm{pr}_\Omega D$, where $D\subseteq\Omega\times[0,1]$ and $D\in\mathscr F\times\mathbf B([0,1])$. A mapping $\xi\colon\Delta\to X$ is called a selection of a set $\Gamma$ if $(\omega,\xi(\omega))\in\Gamma$ for $\omega\in\mathrm{pr}_\Omega\Gamma$. The central result (a measurable selection theorem) is the following.
Theorem 1. For any set $\Gamma\in\mathscr F\times\mathscr B(X)$ there exist measurable mappings 
$$
\xi\colon(\Omega,\mathscr F^P)\to(X,\mathbf B(X)),\qquad\eta\colon(\Omega,\sigma(\mathscr A(\mathscr F)))\to(X,\mathscr B(X)),
$$
which are selections for $\Gamma$. The proof of the existence of $\eta$ is based on the continuum hypothesis. 
Theorem 1 (the part concerning the existence of $\xi$) is used to obtain necessary and sufficient conditions for an extremum in certain problems involving control of random processes with discrete time.
Bibliography: 34 titles.
			
            
            
            
          
        
      @article{SM_1988_59_1_a1,
     author = {I. V. Evstigneev},
     title = {Measurable selection theorems and probabilistic control models in general topological spaces},
     journal = {Sbornik. Mathematics},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/}
}
                      
                      
                    I. V. Evstigneev. Measurable selection theorems and probabilistic control models in general topological spaces. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/
