Measurable selection theorems and probabilistic control models in general topological spaces
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 25-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(\Omega,\mathscr F)$ be a measurable space, $P$ a finite measure on $\mathscr F$, and $X$ a $\sigma$-compact topological space (not necessarily metrizable); $\mathscr B(X)$ is the Baire $\sigma$-algebra of $X$ and $\mathbf B(X)$ the Borel $\sigma$-algebra. Let $\mathscr F^P$ be the completion of $\mathscr F$ with respect to the measure $P$ and $\sigma(\mathscr A(\mathscr F))$ the $\sigma$-algebra generated by the sets $\Delta\subseteq\Omega$ representable in the form $\Delta=\mathrm{pr}_\Omega D$, where $D\subseteq\Omega\times[0,1]$ and $D\in\mathscr F\times\mathbf B([0,1])$. A mapping $\xi\colon\Delta\to X$ is called a selection of a set $\Gamma$ if $(\omega,\xi(\omega))\in\Gamma$ for $\omega\in\mathrm{pr}_\Omega\Gamma$. The central result (a measurable selection theorem) is the following. Theorem 1. For any set $\Gamma\in\mathscr F\times\mathscr B(X)$ there exist measurable mappings $$ \xi\colon(\Omega,\mathscr F^P)\to(X,\mathbf B(X)),\qquad\eta\colon(\Omega,\sigma(\mathscr A(\mathscr F)))\to(X,\mathscr B(X)), $$ which are selections for $\Gamma$. The proof of the existence of $\eta$ is based on the continuum hypothesis. Theorem 1 (the part concerning the existence of $\xi$) is used to obtain necessary and sufficient conditions for an extremum in certain problems involving control of random processes with discrete time. Bibliography: 34 titles.
@article{SM_1988_59_1_a1,
     author = {I. V. Evstigneev},
     title = {Measurable selection theorems and probabilistic control models in general topological spaces},
     journal = {Sbornik. Mathematics},
     pages = {25--37},
     year = {1988},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/}
}
TY  - JOUR
AU  - I. V. Evstigneev
TI  - Measurable selection theorems and probabilistic control models in general topological spaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 25
EP  - 37
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/
LA  - en
ID  - SM_1988_59_1_a1
ER  - 
%0 Journal Article
%A I. V. Evstigneev
%T Measurable selection theorems and probabilistic control models in general topological spaces
%J Sbornik. Mathematics
%D 1988
%P 25-37
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/
%G en
%F SM_1988_59_1_a1
I. V. Evstigneev. Measurable selection theorems and probabilistic control models in general topological spaces. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a1/

[1] Yushkevich A. A., Chitashvili R. Ya., “Upravlyaemye sluchainye posledovatelnosti i tsepi Markova”, UMN, 37:6 (1982), 213–242 | MR | Zbl

[2] Wagner D. H., “Survey of measurable selection theorems”, SIAM J. Control and Opt., 15 (1977), 859–903 | DOI | MR | Zbl

[3] Ioffe A. D., “Survey of measurable selection theorems: Russian literature supplement”, SIAM J. Control and Opt., 16:5 (1978), 728–732 | DOI | MR | Zbl

[4] Wagner D. H., Survey of measurable selection theorems: An update, Measure Theory (Oberwolfach 1979), Lecture Notes Math., No 794, Springer, Berlin–Heidelberg–N.Y., 1980, p. 176–219 | MR

[5] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[6] Kuratovskii K., Topologiya, t. I, Mir, M., 1966 ; Топология, т. II, Мир, М., 1969 | MR

[7] Lusin N., “Sur la problème de J. Hadamard d'uniformisation des ensembles”, Mathematica (Cluj), 4 (1930), 54–66 | Zbl

[8] Yankov V., “Ob unifikatsii $A$-mnozhestv”, DAN SSSR, 30:7 (1941), 591–592

[9] Neumann J. von., “On rings of operators. Reduction theory”, Ann. of Math., 50:2 (1949), 401–485 | DOI | MR | Zbl

[10] Aumann R. J., “Measurable utility and measurable choice theorem”, Proc. Colloq. Int. CNRS “La Décision” (Aixen–Provence, 1967), Ed. CNRS, Paris, 1969, 15–26 | MR

[11] Sainte-Beuve M. F., “On the extension of the von Neumann–Aumann's theorem”, J. Funct. Anal., 17:1 (1974), 112–129 | DOI | MR | Zbl

[12] Leese S. J., “Measurable selections and the uniformization of Souslin sets”, Amer. J. Math., 100 (1978), 19–41 | DOI | MR | Zbl

[13] Levin V. L., “Izmerimye secheniya mnogoznachnykh otobrazhenii i proektsii izmerimykh mnozhestv”, Funktsion. analiz i ego pril., 12:2 (1978), 40–45 | MR | Zbl

[14] Evstigneev I. V., “Methods of random sets”, Vtoraya vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov, ch. III, IMK AN LitSSR, Vilnyus, 1977, 48–51

[15] Evstigneev I. V., “Izmerimyi vybor i aksioma kontinuuma”, DAN SSSR, 238:1 (1978), 11–14 | MR | Zbl

[16] Levin V. L., Milyutin A. A., “Zadacha o peremeschenii mass s razryvnoi funktsiei stoimosti i massovaya postanovka problemy dvoistvennosti dlya vypuklykh ekstremalnykh zadach”, UMN, 34:3 (1979), 3–68 | MR | Zbl

[17] Brown L. D., Purves R., “Measurable selections of extrema”, Ann. Stat., 1 (1973), 902–912 | DOI | MR | Zbl

[18] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[19] Parthasarathy K. R., Probability measures on metric spaces, Academic Press, N.Y.–London, 1967 | MR | Zbl

[20] Talagrand M., “Non-existence de certaines sections measurables et application à la théorie du relèvement”, C. R. Acad. Sci. Paris Sér. A, 286 (1978), 1183–1185 | MR | Zbl

[21] Ionescu Tulcea A., Ionescu Tulcea C., Topics in the theory of lifting, Springer, Berlin–Heidelberg–N.-Y., 1969 | Zbl

[22] Levin V. L., “Vypuklye integralnye funktsionaly i teoriya liftinga”, UMN, 30:2 (1975), 115–178 | MR | Zbl

[23] Graf S., “A measurable selection theorem for compact valued maps”, Manuscripta Math., 27 (1979), 341–352 | DOI | MR | Zbl

[24] Graf S., Measurable weak selections, Measure Theory (Oberwolfach, 1979), Lecture Notes Math., No 794, Springer, Berlin–Heidelberg–N.-Y., 1980, p. 117–140 | MR

[25] Losert V., A counterexample on measurable selections and strong lifting, Ibid., p. 153–159 | MR

[26] Edgar G. A., “Measurable weak sections”, Illinois J. Math., 20 (1976), 630–646 | MR | Zbl

[27] Ershov Zh. P., “O selektorakh v abstraktnykh prostranstvakh”, UMN, 33:6 (1978), 205–206 | MR | Zbl

[28] Levin V. L., “Izmerimye secheniya mnogoznachnykh otobrazhenii v topologicheskie prostranstva i verkhnie ogibayuschie integrantov Karateodori”, DAN SSSR, 252:3 (1980), 535–539 | MR | Zbl

[29] Schegolkov E. A., “Ob uniformizatsii nekotorykh $B$-mnozhestv”, DAN SSSR, 59:6 (1943), 1065–1068

[30] Evstigneev I. V., “Measurable selection and dynamic programming”, Math. Oper. Res., 1:3 (1976), 267–272 | DOI | MR | Zbl

[31] Arkin V. I., Evstigneev I. V., Veroyatnostnye modeli upravleniya, Nauka, M., 1979

[32] Rockafellar R. T., Wets R., “Nonanticipativity and $L^1$-martingales in stochastic optimization problems”, Math. Progr. Studies, 6 (1976), 170–187 | MR | Zbl

[33] Gikhman I. I., Skorokhod A. V., Upravlyaemye sluchainye protsessy, Naukova dumka, Kiev, 1977 | MR

[34] Evstigneev I. V., “Teoremy izmerimogo vybora i veroyatnostnye modeli upravleniya”, DAN SSSR, 283:5 (1985), 1065–1068 | MR | Zbl