Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 1-23

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of boundary value problems generated by the Sturm–Liouville equation $$ -y''(x)+q(x)y(x)=\lambda^2y(x) $$ on the interval $[0,\pi]$, with real potential $q(x)\in L_2[0,\pi]$ and with general selfadjoint boundary conditions $$ a_{11}y(0)+a_{12}y'(0)+a_{13}y(\pi)+a_{14}y'(\pi)=0,\quad a_{21}y(0)+a_{22}y'(0)+a_{23}y(\pi)+a_{24}y'(\pi)=0. $$ For all such problems a characterization of the spectrum is found, i.e. complementary spectral data which, together with the spectrum, allow one to recover the boundary value problem uniquely. Figures: 4. Bibliography: 18 titles.
@article{SM_1988_59_1_a0,
     author = {O. A. Plaksina},
     title = {Inverse problems of spectral analysis for the {Sturm--Liouville} operators with nonseparated boundary conditions},
     journal = {Sbornik. Mathematics},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/}
}
TY  - JOUR
AU  - O. A. Plaksina
TI  - Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 1
EP  - 23
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/
LA  - en
ID  - SM_1988_59_1_a0
ER  - 
%0 Journal Article
%A O. A. Plaksina
%T Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions
%J Sbornik. Mathematics
%D 1988
%P 1-23
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/
%G en
%F SM_1988_59_1_a0
O. A. Plaksina. Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/