Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 1-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is devoted to the study of boundary value problems generated by the Sturm–Liouville equation 
$$
-y''(x)+q(x)y(x)=\lambda^2y(x)
$$
on the interval $[0,\pi]$, with real potential $q(x)\in L_2[0,\pi]$ and with general selfadjoint boundary conditions
$$
a_{11}y(0)+a_{12}y'(0)+a_{13}y(\pi)+a_{14}y'(\pi)=0,\quad a_{21}y(0)+a_{22}y'(0)+a_{23}y(\pi)+a_{24}y'(\pi)=0.
$$ For all such problems a characterization of the spectrum is found, i.e. complementary spectral data which, together with the spectrum, allow one to recover the boundary value problem uniquely.
Figures: 4.
Bibliography: 18 titles.
			
            
            
            
          
        
      @article{SM_1988_59_1_a0,
     author = {O. A. Plaksina},
     title = {Inverse problems of spectral analysis for the {Sturm--Liouville} operators with nonseparated boundary conditions},
     journal = {Sbornik. Mathematics},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/}
}
                      
                      
                    TY - JOUR AU - O. A. Plaksina TI - Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions JO - Sbornik. Mathematics PY - 1988 SP - 1 EP - 23 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/ LA - en ID - SM_1988_59_1_a0 ER -
O. A. Plaksina. Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions. Sbornik. Mathematics, Tome 59 (1988) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/SM_1988_59_1_a0/
