Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 417-434
Voir la notice de l'article provenant de la source Math-Net.Ru
The Rallis mapping is used to obtain commutation formulas for the Hecke operators of the symplectic and orthogonal groups on the space of theta-series. These formulas are applied to the multiplicative arithmetic of representations of quadratic forms by forms.
Bibliography: 15 titles.
@article{SM_1987_58_2_a7,
author = {V. G. Zhuravlev},
title = {Explicit duality formulas for symplectic and orthogonal {Hecke} operators on theta-series of positive quadratic forms},
journal = {Sbornik. Mathematics},
pages = {417--434},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a7/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms JO - Sbornik. Mathematics PY - 1987 SP - 417 EP - 434 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a7/ LA - en ID - SM_1987_58_2_a7 ER -
V. G. Zhuravlev. Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 417-434. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a7/