Two theorems on divisibility and torsion in Milnor's $K$-groups
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 407-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Milnor $K$-groups of complete discrete valuation fields are studied. Bibliography: 9 titles.
@article{SM_1987_58_2_a6,
     author = {R. A. Bogomolov},
     title = {Two theorems on divisibility and torsion in {Milnor's} $K$-groups},
     journal = {Sbornik. Mathematics},
     pages = {407--416},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a6/}
}
TY  - JOUR
AU  - R. A. Bogomolov
TI  - Two theorems on divisibility and torsion in Milnor's $K$-groups
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 407
EP  - 416
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a6/
LA  - en
ID  - SM_1987_58_2_a6
ER  - 
%0 Journal Article
%A R. A. Bogomolov
%T Two theorems on divisibility and torsion in Milnor's $K$-groups
%J Sbornik. Mathematics
%D 1987
%P 407-416
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a6/
%G en
%F SM_1987_58_2_a6
R. A. Bogomolov. Two theorems on divisibility and torsion in Milnor's $K$-groups. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 407-416. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a6/

[1] Ivasava K., Lokalnaya teoriya polei klassov, Mir, M., 1983 | MR

[2] Merkurev A. S, Suslin A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46, 1982, 5, 1011–1046 | MR

[3] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[4] Bass H., Tate J., The Milnor ring of a global field, Lecture Notes Math., 342, 1973, p. 349–446 | MR

[5] Carroll J. E., On the torsion in $K_2$ of local fields, Lecture Notes Math., 342, 1973, p. 464–473 | MR | Zbl

[6] Kahn B., L'anneau de Milnor d'un corps local, Thèse pour obten. le titre de Dren Math. Pures, I, L'Univ. de Bordeaux, Bordeaux, 1983

[7] Kato K., “A generalization of local class field theory by using $K$-groups, II”, J. Fac. Sci. Univ. Tokyo. Sect. 1A, 27 (1980), 603–683 | MR | Zbl

[8] Milnor J., “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9:4 (1970), 318–344 | DOI | MR | Zbl

[9] Tate J., “Relations between $K_2$ and Galois cohomology”, Invent. Math., 36 (1976), 257–274 | DOI | MR | Zbl