Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 397-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of formally Hamiltonian systems a certain class of statistical solutions which it is natural to call equilibrium solutions is singled out. The properties of these solutions are studied. If the system is sufficiently regular, then each equilibrium solution satisfies the Kubo–Martin–Schwinger condition in the classical form. Bibliography: 15 titles.
@article{SM_1987_58_2_a5,
     author = {I. D. Chueshov},
     title = {Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom},
     journal = {Sbornik. Mathematics},
     pages = {397--406},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a5/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 397
EP  - 406
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a5/
LA  - en
ID  - SM_1987_58_2_a5
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom
%J Sbornik. Mathematics
%D 1987
%P 397-406
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a5/
%G en
%F SM_1987_58_2_a5
I. D. Chueshov. Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 397-406. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a5/

[1] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. uravneniya, 16 (1980), 1925–1935 | MR | Zbl

[2] Arsenev A. A., “Ob invariantnykh merakh dlya klassicheskikh dinamicheskikh sistem s beskonechnomernym fazovym prostranstvom”, Matem. sb., 121(163) (1983), 297–309 | MR

[3] Aizenman M., Gallavotti G., Lebowitz J. L., “Stability and equilibrium states of infinite classical systems”, Comm. Math. Phys., 48 (1976), 1–14 | DOI | MR

[4] Petrina D. Ya, Ivanov S. S, Rebenko A. L., Uravneniya dlya koeffitsientnykh funktsii matritsy rasseyaniya, Nauka, M., 1979 | MR

[5] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976

[6] Chueshov I. D., Ob uravneniyakh dlya $S$-matritsy v evklidovoi teorii, Preprint ITF-76-68R, ITF AN USSR, Kiev, 1976

[7] Chueshov I. D., “Veroyatnostnaya struktura nekotorogo klassa uravnenii dlya $S$-matritsy v bozonnoi teorii”, TMF, 37 (1978), 30–39 | MR

[8] Fröhlich J., “Schwinger functions and their generating functionals, II. Markovian and generalized path space measures on $L^1$”, Adv. Math., 23 (1977), 119–180 | DOI | MR | Zbl

[9] Albeverio S., Höegh-Krohn R., “Dirichlet forms and diffusion processes on rigged Hilbert spaces”, Z. Wahrscheinlichkeitstheorie Geb., 40 (1977), 1–57 | DOI | MR | Zbl

[10] Friedlander L., “An invariant measure for the equation $u_{tt}-u_{xx}+u^3=0$”, Comm. Math. Phys., 98 (1985), 1–16 | DOI | MR | Zbl

[11] Peskov N. V., “O sostoyanii Kubo–Martina–Shvingera sistemy sinus-Gordon”, TMF, 64 (1985), 32–40 | MR | Zbl

[12] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21 (1957), 747–784

[13] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[14] Albeverio S., Ribeiro de Faria M., Höegh-Krohn R., “Stationary measures for the periodic Euler flow in two dimensions”, J. Stat. Phys., 20 (1979), 585–595 | DOI | MR

[15] Boldrighini C., Frigio S., “Equilibrium states for a plane incompressible perfect fluid”, Comm. Math. Phys., 72 (1980), 55–76 | DOI | MR | Zbl