The direct and inverse scattering problems for the one-dimensional perturbed Hill operator
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 351-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of scattering by a one-dimensional periodic lattice $p(x)$ with impurity potential $q(x)$ is considered. A stationary scattering matrix is constructed on the basis of the asymptotics of the scattered waves, its properties are studied, and it is shown to coincide with the nonstationary scattering operator defined in the usual way in the quasimomentum representation of the unperturbed operator $H_0$. The inverse scattering problem is also solved, i.e., the problem of recovering $q(x)$ on the basis of $p(x)$ and the scattering data. Here we follow the scheme going back to the well-known work of V. A. Marchenko and L. D. Faddeev. However, solution of the inverse problem in the presence of a periodic lattice required considerable modification of classical arguments. The theory of so-called “global” quasimomentum serves as analytic basis. Conditions on the scattering data are found which are necessary with a finite second moment and sufficient in order that there exist a unique impurity potential with given scattering characteristics and a finite first moment. Bibliography: 28 titles.
@article{SM_1987_58_2_a3,
     author = {N. E. Firsova},
     title = {The direct and inverse scattering problems for the one-dimensional perturbed {Hill} operator},
     journal = {Sbornik. Mathematics},
     pages = {351--388},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a3/}
}
TY  - JOUR
AU  - N. E. Firsova
TI  - The direct and inverse scattering problems for the one-dimensional perturbed Hill operator
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 351
EP  - 388
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a3/
LA  - en
ID  - SM_1987_58_2_a3
ER  - 
%0 Journal Article
%A N. E. Firsova
%T The direct and inverse scattering problems for the one-dimensional perturbed Hill operator
%J Sbornik. Mathematics
%D 1987
%P 351-388
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a3/
%G en
%F SM_1987_58_2_a3
N. E. Firsova. The direct and inverse scattering problems for the one-dimensional perturbed Hill operator. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 351-388. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a3/

[1] Firsova N. E., “Rimanova poverkhnost kvaziimpulsa i teoriya rasseyaniya dlya vozmuschennogo operatora Khilla”, Matematicheskie voprosy teorii rasprostraneniya voln. 7, Zap. nauchn. seminara LOMI, 51, 1975, 183–196 | MR | Zbl

[2] Firsova N. E., “Obratnaya zadacha rasseyaniya dlya vozmuschennogo operatora Khilla”, Matem. zametki, 18:6 (1975), 831–843 | MR | Zbl

[3] Marchenko V. A., “Vosstanovlenie potentsialnoi energii po fazam rasseyannykh voln”, DAN SSSR, 104:5 (1955), 695–698 | Zbl

[4] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseyaniya, Izd-vo Kharkovskogo un-ta, 1960

[5] Faddeev L. D., “O svyazi $S$-matritsy i potentsiala dlya odnomernogo operatora Shredingera”, DAN SSSR, 121:1 (1958), 63–66 | MR | Zbl

[6] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya, II”, Sovremennye problemy matematiki, 3, VINITI, 1974, 93–180

[7] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[8] Newton R. G., Inverse Scattering by a Local Impurity in a Periodic Potential in One Dimension, Preprint, 1983 | MR

[9] Firsova N. E., Formula sleda dlya vozmuschennogo operatora Shredingera s periodicheskim potentsialom, Diplomnaya rabota, fiz. fak., LGU, 1971

[10] Firsova N. E., “Formula sleda dlya vozmuschennogo operatora Shredingera s periodicheskim potentsialom, I”, Problemy matem. fiziki, 7, Izd-vo LGU, L., 1974, 162–177 | MR

[11] Firsova N. E., “Formula sleda dlya vozmuschennogo operatora Shredingera s periodicheskim potentsialom II”, Problemy matem. fiziki, 8, Izd-vo LGU, L., 1976, 158–170 | MR

[12] Rofe-Beketov F. S., “Vozmuschenie operatora Khilla, imeyuschee pervyi moment i otlichnyi ot nulya integral, vnosit v dalekie spektralnye lakuny po odnomu diskretnomu urovnyu”, Matem. fizika i funktsion. analiz, 4, Kharkov, 1973, 158–159 | MR

[13] Zheludev V. A., “O vozmuschenii spektra odnomernogo samosopryazhennogo operatora Shredingera s periodicheskim potentsialom”, Problemy matem. fiziki, 4, Izd-vo LGU, L., 1970, 61–82

[14] Titchmarsh E. I., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 2, IL, M., 1961

[15] Kramers H. A., “Das Eigenwertproblem im eindimensionalen periodischen Kraftfelde”, Physica, 2 (1935), 483–490 | DOI | Zbl

[16] Firsova N. E., “O rezonansakh operatora Khilla s eksponentsialno ubyvayuschim primesnym potentsialom”, Matem. zametki, 36:5 (1984), 711–724 | MR | Zbl

[17] Zaiman Dzh., Printsipy teorii tverdogo tela, Mir, M., 1974

[18] Kohn, “Analytic Properties of Bloch Waves and Wannier Functions”, Phys. Rev., 115 (1959), 809–821 | DOI | MR | Zbl

[19] Firsova N. E., “O formule Levinsona dlya vozmuschennogo operatora Khilla”, TMF, 62:2 (1985), 196–209 | MR | Zbl

[20] Rofe-Beketov F. S., “Priznak konechnosti diskretnykh urovnei, vnosimykh v lakuny nepreryvnogo spektra vozmuscheniyami periodicheskogo potentsiala”, DAN SSSR, 156:3 (1964), 515–518 | MR | Zbl

[21] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55(97) (1961), 125–173 | MR

[22] Its A. I., Matveev V. B., “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | MR

[23] Firsova N. E., “Ob operatorakh preobrazovaniya dlya vozmuschennogo operatora Khilla”, Funktsion. analiz i ego pril., 20:4 (1986)

[24] Birman M. Sh., “Ob usloviyakh suschestvovaniya volnovykh operatorov”, DAN SSSR, 143:3 (1962), 506–509 | MR | Zbl

[25] Gabriel R. M., “Conserning integrals moduli of regular functions along convex curves”, Proc. Lond. Math. Soc., 39 (1935), 216–231 | DOI | Zbl

[26] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[27] Smirnov V. I., “Sur les formules Cauchy et de Green est quelque problemes qui s'y rattachent”, Izv. AN SSSR. Ser. matem., 1932, no. 3, 337–372 | Zbl

[28] Zheludev V. A., O spektre operatora Shredingera s periodicheskim potentsialom, zadannogo na poluosi, Tr. kafedry matem. analiza, Kaliningrad, 1969