@article{SM_1987_58_2_a2,
author = {A. L. Vol'berg and B. J\"oricke},
title = {Summability of the logarithm of an almost analytic function and a~generalization of the {Levinson{\textendash}Cartwright} theorem},
journal = {Sbornik. Mathematics},
pages = {337--349},
year = {1987},
volume = {58},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/}
}
TY - JOUR AU - A. L. Vol'berg AU - B. Jöricke TI - Summability of the logarithm of an almost analytic function and a generalization of the Levinson–Cartwright theorem JO - Sbornik. Mathematics PY - 1987 SP - 337 EP - 349 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/ LA - en ID - SM_1987_58_2_a2 ER -
%0 Journal Article %A A. L. Vol'berg %A B. Jöricke %T Summability of the logarithm of an almost analytic function and a generalization of the Levinson–Cartwright theorem %J Sbornik. Mathematics %D 1987 %P 337-349 %V 58 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/ %G en %F SM_1987_58_2_a2
A. L. Vol'berg; B. Jöricke. Summability of the logarithm of an almost analytic function and a generalization of the Levinson–Cartwright theorem. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 337-349. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/
[1] Levinson N., Gap and density theorems, v. XXVI, AMS Coll. Publ., New York, 1940 | MR | Zbl
[2] Beurling A., Quasianalyticity and general distributions, Stanford univ. lect. notes, 1961
[3] Volberg A. L., “Logarifm pochti analiticheskoi funktsii summiruem”, DAN SSSR, 265:6 (1982), 1297–1302 | MR
[4] Volberg A. L., Polnota ratsionalnykh drobei v vesovykh prostranstvakh na okruzhnosti, Dis. ... kand. fiz-mat. nauk, LOMI AN SSSR, L., 1983
[5] Beurling A., “Analytic continuation across a linear boundary”, Acta Math., 128:3–4 (1972), 153–182 | DOI | MR | Zbl
[6] Dynkin E. M., “Funktsii s dannoi otsenkoi $\partial f/\partial\overline z$ i teorema N. Levinsona”, Matem. sb., 89(131):2(10) (1972), 182–190 | MR | Zbl
[7] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl