Summability of the logarithm of an almost analytic function and a~generalization of the Levinson--Cartwright theorem
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 337-349
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to a generalization of a classical inequality: let $f$ be bounded and analytic in the disk $D$; then $f\not\equiv0\Rightarrow\int_{\mathrm{Fr}\mathbf D}\log|f(e^{i\theta})|\,d\theta>-\infty$, in the case of nonanalytic functions $f$. More precisely, it is proved that if $f=f_1+f_2$, where $f_1$ is the boundary function of a function of bounded characteristic, and $f_2$ is a function in a quasianalytic class (defined by some condition of regularity of decrease of its Fourier coefficients), then $\int_{\mathrm{Fr}\mathbf D}\log|f(e^{i\theta})|\,d\theta>-\infty$. The proof of this result depends in an essential way on a theorem of Levinson and Cartwright. At the same time, the result strengthens the Levinson–Cartwright theorem.
Bibliography: 7 titles.
@article{SM_1987_58_2_a2,
author = {A. L. Vol'berg and B. J\"oricke},
title = {Summability of the logarithm of an almost analytic function and a~generalization of the {Levinson--Cartwright} theorem},
journal = {Sbornik. Mathematics},
pages = {337--349},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/}
}
TY - JOUR AU - A. L. Vol'berg AU - B. Jöricke TI - Summability of the logarithm of an almost analytic function and a~generalization of the Levinson--Cartwright theorem JO - Sbornik. Mathematics PY - 1987 SP - 337 EP - 349 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/ LA - en ID - SM_1987_58_2_a2 ER -
%0 Journal Article %A A. L. Vol'berg %A B. Jöricke %T Summability of the logarithm of an almost analytic function and a~generalization of the Levinson--Cartwright theorem %J Sbornik. Mathematics %D 1987 %P 337-349 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/ %G en %F SM_1987_58_2_a2
A. L. Vol'berg; B. Jöricke. Summability of the logarithm of an almost analytic function and a~generalization of the Levinson--Cartwright theorem. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 337-349. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a2/