Solvability of a~mixed problem for the nonlinear Schr\"odinger equation
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 525-540
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence and uniqueness theorems are established for a generalized solution of a mixed problem for the nonlinear Schrödinger equation in the presence of dissipation in the space $L_\infty(0,T;\overset\circ W{}^1_2(G))$ and $L_\infty(0,T;\overset\circ W{}^1_2(G)\cap W^2_2(G))$.
The method of proving uniqueness of a solution is based on the assumption of the existence and boundedness in $t\in[0,T]$ of the integral of a solution $\int_G\exp(\varkappa|u|^p)\,dx$ for some $\varkappa>0$, where $p$ is the degree of nonlinearity in the equation.
Bibliography: 16 titles.
@article{SM_1987_58_2_a13,
author = {M. V. Vladimirov},
title = {Solvability of a~mixed problem for the nonlinear {Schr\"odinger} equation},
journal = {Sbornik. Mathematics},
pages = {525--540},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/}
}
M. V. Vladimirov. Solvability of a~mixed problem for the nonlinear Schr\"odinger equation. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 525-540. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/