Solvability of a mixed problem for the nonlinear Schrödinger equation
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 525-540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Existence and uniqueness theorems are established for a generalized solution of a mixed problem for the nonlinear Schrödinger equation in the presence of dissipation in the space $L_\infty(0,T;\overset\circ W{}^1_2(G))$ and $L_\infty(0,T;\overset\circ W{}^1_2(G)\cap W^2_2(G))$. The method of proving uniqueness of a solution is based on the assumption of the existence and boundedness in $t\in[0,T]$ of the integral of a solution $\int_G\exp(\varkappa|u|^p)\,dx$ for some $\varkappa>0$, where $p$ is the degree of nonlinearity in the equation. Bibliography: 16 titles.
@article{SM_1987_58_2_a13,
     author = {M. V. Vladimirov},
     title = {Solvability of a~mixed problem for the nonlinear {Schr\"odinger} equation},
     journal = {Sbornik. Mathematics},
     pages = {525--540},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/}
}
TY  - JOUR
AU  - M. V. Vladimirov
TI  - Solvability of a mixed problem for the nonlinear Schrödinger equation
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 525
EP  - 540
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/
LA  - en
ID  - SM_1987_58_2_a13
ER  - 
%0 Journal Article
%A M. V. Vladimirov
%T Solvability of a mixed problem for the nonlinear Schrödinger equation
%J Sbornik. Mathematics
%D 1987
%P 525-540
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/
%G en
%F SM_1987_58_2_a13
M. V. Vladimirov. Solvability of a mixed problem for the nonlinear Schrödinger equation. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 525-540. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a13/

[1] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1(7) (1971), 118–134 | MR

[2] Lugovoi V. I., Prokhrov A. M., “Teoriya rasprostraneniya moschnogo lazernogo izlucheniya v nelineinoi srede”, UFN, 111:2 (1973), 203–247

[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[4] Shabat A. B., “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, 1, Novosibirsk, 1969, 180–194

[5] Kudryashov O. I., “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. matem. zhurn., XVI:4 (1975), 866–868

[6] Nasibov Sh. M., “Ob odnom nelineinom uravnenii tipa Shredingera”, Differents. uravneniya, XVI:4 (1980), 660–670 | MR

[7] Gajewski H., “On an Initial–Boundary Value Problem for the Nonlinear Schrödinger Equation”, International Jorn. of Math, and Math. Sciences, 2:3 (1979), 503–531 | DOI | MR

[8] Vladimirov M. V., “O razreshimosti smeshannoi zadachi dlya nelineinogo uravneniya tipa Shredingera”, DAN SSSR, 275:4 (1984), 780–783 | MR | Zbl

[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[10] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[12] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, UMN, 23:1 (1968), 45–90 | MR | Zbl

[13] Aubin J. P., “Un Theoreme de Compacte”, C. r. Acad. Sci., 256 (1963), 5042–5044 | MR | Zbl

[14] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[15] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl

[16] Agmon S., “On the Eigenfunctions and on the Eigenvalues of General Elliptic Boundary Value Prooblems”, Comm. Pure and Applied Math., 15:2 (1962), 119–147 | DOI | MR | Zbl