Quasianalytical classes of functions in convex domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 505-523
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $D$ be a bounded convex domain lying in the left-hand half-plane, with $0\in\overline D$. A class $H(D,M_n)$, consisting of functions analytic in $D$ and satisfying the inequalities
$$
\max_{z\in D}|f^{(n)}(z)|\leqslant C_fM_n,\qquad n=0,1,\dots,
$$
is said to be quasianalytic at $z=0$ if $H(D,M_n)$ contains no functions that vanish with all their derivatives at $z=0$.
Let $h(\varphi)=\max_{\lambda\in D}\operatorname{Re}\lambda e^{i\varphi}$ and $h(\varphi)=0$, $\varphi\in[\sigma_-,\sigma_+]$, and let
\begin{gather*}
\Delta_+(\alpha)=\sqrt{\alpha-\sigma_+}\biggl(h'(\alpha)+\int^\alpha_{\sigma_+}h(\theta)\,d\theta\biggr),\qquad\sigma_+\alpha\frac\pi2,
\\
\Delta_-(\alpha)=-\sqrt{\sigma_--\alpha}\biggl(h'(\alpha)+\int_{\sigma_-}^\alpha h(\theta)\,d\theta\biggr),\qquad-\frac\pi2\alpha\sigma_-,
\\
v_1(x)=\exp\int_{x_1}^x\frac{2\pi-\Delta_+^{-1}(y)+\Delta_-^{-1}(y)}{-\pi+\Delta_+^{-1}(y)-\Delta_-^{-1}(y)}\cdot\frac{dy}y,\qquad x\to0,\quad x_1>0.
\end{gather*}
It is shown that the condition 
$$
\int_1^\infty\frac{\ln T(r)}{v(r)\cdot r^2}\,dr=+\infty,
$$
where $T(r)=\sup r^nM_n^{-1}$ is the trace function of the sequence $(M_n)$, and $v(r)$ is the inverse of $v_1(x)$, is necessary and sufficient for the quasianalyticity of $H(D,M_n)$.
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when $D=\bigl\{z:|\arg z|\frac\pi{2\gamma}\bigr\}$ the theorem follows from Salinas's results of 1955. For $D=\{z:|z+1|=1\}$ the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1987_58_2_a12,
     author = {R. S. Yulmukhametov},
     title = {Quasianalytical classes of functions in convex domains},
     journal = {Sbornik. Mathematics},
     pages = {505--523},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a12/}
}
                      
                      
                    R. S. Yulmukhametov. Quasianalytical classes of functions in convex domains. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 505-523. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a12/
