Contractions of the actions of reductive algebraic groups
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 311-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that each algebraic action of a simply connected reductive algebraic group $G$ on an affine algebraic variety $X$ can be contracted (in a flat one-dimensional family of actions) to a canonical action of $G$ on a certain affine variety $\operatorname{gr}X$ having some very special properties. It is shown that $X$ and $\operatorname{gr}X$ have many algebro-geometric properties in common. As an application, we prove the Procesi–Kraft conjecture to the effect that the singularities of the closures of orbits in the case of spherical stabilizer are rational. It is assumed that the ground field has characteristic zero. Bibliography: 37 titles.
@article{SM_1987_58_2_a1,
     author = {V. L. Popov},
     title = {Contractions of the actions of reductive algebraic groups},
     journal = {Sbornik. Mathematics},
     pages = {311--335},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a1/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Contractions of the actions of reductive algebraic groups
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 311
EP  - 335
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a1/
LA  - en
ID  - SM_1987_58_2_a1
ER  - 
%0 Journal Article
%A V. L. Popov
%T Contractions of the actions of reductive algebraic groups
%J Sbornik. Mathematics
%D 1987
%P 311-335
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a1/
%G en
%F SM_1987_58_2_a1
V. L. Popov. Contractions of the actions of reductive algebraic groups. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 311-335. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a1/

[1] Borho U., Kraft H., “Über Bahnen und deren Deformationen bei linearen Aktionen reductiver Gruppen”, Comm. Math. Helvet., 54:1 (1979), 61–104 | DOI | MR | Zbl

[2] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 749–764 | MR | Zbl

[3] Kempf G. R., “On the collapsing of homogeneous bundles”, Invent. Math., 37 (1976), 229–239 | DOI | MR | Zbl

[4] Vust T., “Sur la théorie des invariants des groupes classiques”, Ann. Inst. Fourier, 26:1 (1976), 1–31 | MR | Zbl

[5] Brion M., “Sur la théorie des invariants”, Publ. Math, de l'Univ. Pierre et Marie Curie, 1982, no. 45, 1–92

[6] Grosshans F., “Observable groups and Hilbert's fourteenth problem”, Am. J. Math., XCV:1 (1973), 229–253 | DOI | MR

[7] Grosshans F., “The invariants of unipotent radicals of parabolic subgroups”, Invent. Math., 73 (1983), 1–3 | DOI | MR

[8] Tursunov B., Khadzhiev D., “Svyaz mezhdu algebrami invariantov algebraicheskoi gruppy”, DAN UzSSR, 1984, no. 7, 8–10 | MR | Zbl

[9] Vinberg E. B., Kimelfeld B. N., “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funktson. analiz i ego pril., 12:3 (1978), 12–19 | MR | Zbl

[10] Servedio F. J., “Prehomogeneous vector spaces and varieties”, Trans. Am. Math. Soc., 176 (1973), 421–444 | DOI | MR | Zbl

[11] Krämer M., “Sphärische Untergruppen in kompakten zusammenhängen – den Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[12] Mikityuk I. V., Ob integriruemosti invariantnykh gamiltonovykh sistem s odnorodnymi konfiguratsionnymi prostranstvami, Preprint ITF-85-30R, Inst. teor. fiziki AN USSR, 1985, s. 3–37

[13] Luna D., Vust T., “Plongements d'espaces homogènes”, Comm. Math. Helvet., 58:2 (1983), 186–245 | DOI | MR | Zbl

[14] Vust T., “Opération de groupes réductifs dans un type de cônes presque homogènes”, Bull. Soc. Math. de France, 102 (1974), 314–334 | MR

[15] Vinberg E. B., “Slozhnost deistvii reduktivnykh grupp”, Funktsion. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl

[16] Brion M., Quelques propriétés des espaces homogènes sphériques, Prepublication de l'Inst. Fourier, Univ. de Grenoble, 1985

[17] Kraft H., Procesi C., “On the geometry of conjugacy classes in classical groups”, Comm. Math. Helvet., 57 (1982), 539–602 | DOI | MR | Zbl

[18] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $SL_2$”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 792–832 | MR | Zbl

[19] Kraft H., Geometrische Methoden in der Invariantentheorie, Aspects of Math., Vieweg, 1984 | MR

[20] Sampson J. H., Washnitzer S. A., “Künneth formula for coherent algebraic shaves”, Illinois J. Math., 3 (1959), 389–402 | MR | Zbl

[21] Mumford D., Fogarty J., “Geometric Invariant Theory”, Erg. der Math, und ihrer Grenzg, 34, Springer-Verlag, 1982 | MR | Zbl

[22] Khamfri D., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[23] Khadzhiev D., “Nekotorye voprosy teorii vektornykh invariantov”, Matem. sb., 72(114) (1967), 420–435 | Zbl

[24] Burbaki N., Gruppy i algebry Li, Glavy VII, VIII, Mir, M., 1978 | MR

[25] Burbaki N., Gruppy i algebry Li, Glavy IV, V, VI, Mir, M., 1972 | MR | Zbl

[26] Grothendieck A., Dieudonné J., “Eléments de Géométrie Algébrique. IV”, Publ. Math. IHES, 28 (1966) | MR | Zbl

[27] Elkik R., “Singularités rationnelles et déformations”, Invent. Math., 47 (1978), 139–147 | DOI | MR | Zbl

[28] Boutot J.-F., Singularites rationnelles et quotients par les groups reductifs, Preprint, Univ. Louis Pasteur, p. 1–7 | MR

[29] Pauer F., “Plongements normaux de l'espace homogène $\text{SL}(3)/\text{SL}(2)$”, Comptes Rendus du $108^{\text{e}}$ Congrès Nat. des Soc. Savantes, Grenoble, 1983, 87–104 | MR

[30] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans Amer. Math Soc., 101:2 (1961), 211–223 | DOI | MR | Zbl

[31] Rosenlicht M., “A remark on quotient spaces”, An. Acad. Brasil Ci., 35 (1963), 487–489 | MR | Zbl

[32] Rosenlicht M., “Some basic theorems on algebraic groups”, Am. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl

[33] Matsumura H., “On algebraic group of birational transformations”, Rend. Acad. Naz. Lincei, ser. VII, 34 (1963), 151–155 | MR | Zbl

[34] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal Embeddingo, I, Lect. Notes Math., 339, 1973 | MR | Zbl

[35] Kempf G. R., “Vanishing theorems for flag manifolds”, Am. J. Math., 98 (1976), 325–331 | DOI | MR | Zbl

[36] Kempf G. R., “Linear systems on homogeneous spaces”, Ann. Math., 103 (1976), 557–591 | DOI | MR | Zbl

[37] Kempf G. R., “On the geometry of a theorem of Riemann”, Ann. Math., 98 (1973), 178–185 | DOI | MR | Zbl