On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory
Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 289-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper local properties of weak solutions of nonlinear elliptic systems arising in problems of the deformation theory of plasticity are investigated. $L^p$-estimates are obtained for a weak solution in the case of plasticity with power-type consolidation. For linear consolidation various properties are established, such as the Hölder continuity of a weak solution, the square-integrability of its second order derivatives, and $L^p$-estimates for these derivatives. Here the elasticity and plasticity domains are introduced. In the former the solution is regular, while in the latter, when there are more than two variables, a weak solution has Hölder continuous first derivatives in a subdomain that differs from the plasticity domain by a set of measure zero. Bibliography: 20 titles.
@article{SM_1987_58_2_a0,
     author = {G. A. Seregin},
     title = {On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory},
     journal = {Sbornik. Mathematics},
     pages = {289--309},
     year = {1987},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_2_a0/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 289
EP  - 309
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_2_a0/
LA  - en
ID  - SM_1987_58_2_a0
ER  - 
%0 Journal Article
%A G. A. Seregin
%T On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory
%J Sbornik. Mathematics
%D 1987
%P 289-309
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_58_2_a0/
%G en
%F SM_1987_58_2_a0
G. A. Seregin. On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory. Sbornik. Mathematics, Tome 58 (1987) no. 2, pp. 289-309. http://geodesic.mathdoc.fr/item/SM_1987_58_2_a0/

[1] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics, No 105, Princeton University Press, 1983 | MR | Zbl

[2] Koshelev A. I., “Regulyarnost reshenii kvazilineinykh ellipticheskikh sistem”, UMN, 33:4 (1978), 3–49 | MR | Zbl

[3] Nečas J., “Varitional Inequality in Elasticity and Plasticity with Application to Signorini's Problems and Flow Theory of Plasticity”, ZAMM, 60 (1980), 20–26

[4] Nečas J., Hlavaček I., “Solution of Signaroni's Contact Problem in the Deformation Theory of Plasticity by Secant Modules Method”, Aplikace Matematiky, 28 (1983), 199–214 | MR | Zbl

[5] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 256–277 | DOI | MR

[6] Giaquinta M., Modica G., “Regularity results for some classes of higher order non-linear systems”, J. Reiyne Angew. Math., 311/312 (1979), 145–169 | MR | Zbl

[7] Nečas J., “On regularity of solutions variational inequalities for second-order elliptic systems”, Rend, di Matematica, Ser. VI, 8 (1975), 481–498 | MR | Zbl

[8] Klyushnikov V. D., Matematicheskaya teoriya plastichnosti, Izd-vo MGU, M., 1979 | MR

[9] Anzellotti G., Giaquinta M., “On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium”, J. Math. pure et appl., 62 (1982), 219–244 | MR

[10] Kohn R., Temam R., “Dual spaces of stresses and strains with application to Hencky plasticity”, Appl. Math. Optim., 10:1 (1983), 1–35 | DOI | MR | Zbl

[11] Seregin G. A., “O korrektnosti variatsionnykh problem mekhaniki idealno uprugo-plasticheskikh sred”, DAN SSSR, 276:1 (1984), 71–75 | MR | Zbl

[12] Seregin G. A., “Variatsionnye zadachi i evolyutsionnye variatsionnye neravenstva v nerefleksivnykh prostranstvakh s prilozheniyami k zadacham geometrii i plastichnosti”, Izv. AN SSSR. Ser. matem., 1984, no. 2, 420–445 | MR | Zbl

[13] Piletskas K. I., “O prostranstvakh solenoidalnykh vektorov”, Zap. nauchn. seminarov LOMI, 96 (1980), 237–239 | Zbl

[14] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i ob obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zap. nauchn. seminarov LOMI, 59 (1976), 81–116 | Zbl

[15] Mosolov P. P., Myasnikov V. A., “O korrektnosti kraevykh zadach v mekhanike sploshnykh sred”, Matem. sb., 88(130) (1972), 256–287 | MR

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[17] Giaquinta M., “On differentiability of the extremals of variational integrals”, Nonlinear Anal., Funct. Spaces and Appl., 2 (1983), 38–92 | MR

[18] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[19] Giaquinta M., “Differentiability of Minima of non-differentiable functionals”, Invent. Math., 72 (1983), 285–298 | DOI | MR | Zbl

[20] Giusti E., “Precisazione delle funzioni $H^{1,p}$ e singolarità delle soluzione deboli di sistemi ellitici non lineari”, Boll. Un. Mat. Hal., Ser. 4, 2 (1969), 71–76 | MR | Zbl