A complex succession function in the problem of generation of complex limit cylinders and their relation with real limit cycles
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 169-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A succession function is constructed in the neighborhood of a complex focus, and its properties are studied. A theorem is proved concerning the generation of complex cylinders, and a connection between these and real limit cycles is established. The results have theoretical significance. Bibliography: 18 titles.
@article{SM_1987_58_1_a9,
     author = {V. P. Tareev},
     title = {A~complex succession function in the problem of generation of complex limit cylinders and their relation with real limit cycles},
     journal = {Sbornik. Mathematics},
     pages = {169--183},
     year = {1987},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a9/}
}
TY  - JOUR
AU  - V. P. Tareev
TI  - A complex succession function in the problem of generation of complex limit cylinders and their relation with real limit cycles
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 169
EP  - 183
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a9/
LA  - en
ID  - SM_1987_58_1_a9
ER  - 
%0 Journal Article
%A V. P. Tareev
%T A complex succession function in the problem of generation of complex limit cylinders and their relation with real limit cycles
%J Sbornik. Mathematics
%D 1987
%P 169-183
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a9/
%G en
%F SM_1987_58_1_a9
V. P. Tareev. A complex succession function in the problem of generation of complex limit cylinders and their relation with real limit cycles. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a9/

[1] Andronov A. A., Leontovich E. A., “Rozhdenie predelnykh tsiklov iz negrubogo fokusa ili tsentra i ot negrubogo predelnogo tsikla”, Matem. sb., 40(82) (1956), 179–224 | MR | Zbl

[2] Arnold V. I., “Zamechaniya ob osobennostyakh konechnoi korazmernosti v kompleksnykh dinamicheskikh sistemakh”, Funktsion. analiz i ego pril., 3:1 (1969), 1–6 | MR | Zbl

[3] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Arnold V. I., “Bifurkatsii invariantnykh mnogoobrazii differentsialnykh uravnenii i normalnye formy okrestnostei ellipticheskikh krivykh”, Funktsion. analiz i ego pril., 10:4 (1976), 1–12 | MR | Zbl

[5] Bogdanov R. I., “Lokalnye orbitalnye normalnye formy vektornykh polei na ploskosti”, Tr. seminara im. I. G. Petrovskogo, 5 (1979), 51–84 | MR | Zbl

[6] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[7] Dyulak A., O predelnykh tsiklakh, Nauka, M., 1980 | MR

[8] Ilyashenko Yu. S., “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $\frac{dw}{dz}=-\frac{R_z}{R_{\omega}}$, gde $R(z,w)$ – mnogochlen”, Matem. sb., 78(120) (1969), 360–379 | MR

[9] Ilyashenko Yu. S, Pyartli A. S., “Materializatsiya rezonansov Puankare i raskhodimost normalizuyuschikh ryadov”, Tr. seminara im. I. G. Petrovskogo, 7 (1981), 3–49 | MR | Zbl

[10] Ilyashenko Yu. S, Pyartli A. S., “Materializatsiya rezonansov i raskhodimost normalizuyuschikh ryadov dlya polinomialnykh differentsialnykh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 8 (1982), 111–127 | MR | Zbl

[11] Ilyashenko Yu. S., Osobye tochki i predelnye tsikly differentsialnykh uravnenii na veschestvennoi i kompleksnoi ploskosti, Preprint NIVTs AN SSSR, ONTI NIVTs AN SSSR, Puschino, 1982

[12] Leontovich E. A., Tareev V. P., “K voprosu o rozhdenii integralnykh krivykh ot separatrisnogo konusa dvumernoi kompleksnoi dinamicheskoi sistemy”, DAN SSSR, 207:6 (1972), 1277–1280 | MR | Zbl

[13] Leontovich E. A., Tareev V. P., “O kanonicheskoi forme differentsialnogo uravneniya, zavisyaschego ot parametra, v okrestnosti osoboi tochki iz oblasti Zigelya”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1980, 108–122 | MR

[14] Petrovskii I. G., Landis E. M., “O chisle predelnykh tsiklov uravneniya $-\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – mnogochleny 2-i stepeni”, Matem. sb., 37(79) (1955), 209–250 | MR | Zbl

[15] Pyartli A. S., “Rozhdenie kompleksnykh invariantnykh mnogoobrazii vblizi osoboi tochki vektornogo polya, zavisyaschego ot parametra”, Funktsion. analiz i ego pril., 6:4 (1972), 95–96 | MR | Zbl

[16] Pyartli A. S., “Tsikly sistemy dvukh kompleksnykh differentsialnykh uravnenii v okrestnosti nepodvizhnoi tochki”, Tr. MMO, 37 (1978), 95–106 | MR | Zbl

[17] Tareev V. P., “O rozhdenii kompleksnykh predelnykh tsilindrov”, DAN SSSR, 209:2 (1973), 305–308 | MR | Zbl

[18] Dulac H., “Recherches sur les points singuliers des equations differentielles”, J. Ecole polytechn., Paris, sér. II, 9 (1904), 1–125