On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szeg\"o's condition
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 149-167

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers asymptotic properties of polynomials $\varphi_n(z)$, orthonormal on the unit circle $\Gamma$, with weights $f(z)$ that do not satisfy Szegö's condition. It is shown, in particular, that if $f(z)$ satisfies a Dini–Lipschitz condition, then $\lim_{n\to\infty}|\varphi_n(z)|=f(z)^{-1/2}$ uniformly on each set $\gamma\subset\Gamma$ on which $f$ has a positive lower bound. Bibliography: 9 titles.
@article{SM_1987_58_1_a8,
     author = {E. A. Rakhmanov},
     title = {On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the {Szeg\"o's} condition},
     journal = {Sbornik. Mathematics},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a8/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szeg\"o's condition
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 149
EP  - 167
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a8/
LA  - en
ID  - SM_1987_58_1_a8
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szeg\"o's condition
%J Sbornik. Mathematics
%D 1987
%P 149-167
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a8/
%G en
%F SM_1987_58_1_a8
E. A. Rakhmanov. On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szeg\"o's condition. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 149-167. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a8/