Best quadrature formulas and methods of reconstructing functions defined by variation diminishing kernels
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 101-117
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers classes of periodic functions given by variation diminishing convolutions. These classes include, for example, the Sobolev class $W_p^r(\mathbf T)$ and the class $K_p^U(\mathbf T)=\{f|\|U(d/dx)f(\cdot)\|_p\leqslant1\}$, where $U$ is any polynomial with real coefficients and real roots. The Poisson kernel, the de la Vallée–Poussin kernel and many others have the variation diminishing property.
For classes given by variation diminishing convolutions the author proves optimality of the rectangle formula among all quadrature formulas of the form $\sum^k_{i=1}\sum^{\nu_i-1}_{j=0}a_{ij}f^{(j)}(x_i)$ with $\sum_{i=1}^k\nu_i\leqslant N$. In addition, a solution of Favard's problem is given and an optimal method of reconstructing functions of these classes is found.
Bibliography: 22 titles.
@article{SM_1987_58_1_a5,
author = {Nguy\^en Thị Thi\^eu Hoa},
title = {Best quadrature formulas and methods of reconstructing functions defined by variation diminishing kernels},
journal = {Sbornik. Mathematics},
pages = {101--117},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a5/}
}
TY - JOUR AU - Nguyên Thị Thiêu Hoa TI - Best quadrature formulas and methods of reconstructing functions defined by variation diminishing kernels JO - Sbornik. Mathematics PY - 1987 SP - 101 EP - 117 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a5/ LA - en ID - SM_1987_58_1_a5 ER -
Nguyên Thị Thiêu Hoa. Best quadrature formulas and methods of reconstructing functions defined by variation diminishing kernels. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a5/