Invertibility of nonautonomous functional-differential operators
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 83-100
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $C^{(m)}$ be the Banach space of continuous and bounded functions on $R$ that take values in a finite-dimensional Banach space $E$ and have derivatives up to and including order $m$. The norm in $C^{(m)}$ is given by $\|x\|_{C^{(m)}}=\sup_{t\in R,k=\overline{0,m}}\big\|\frac{d^kx(t)}{dt^k}\big\|_E$. Let $C^{(m)}_\omega$ be the Banach space of $\omega$-periodic functions with the same norm as $C^{(m)}$.
Theorem. {\it Suppose
$1)\ A$ is a $c$-completely continuous element of the space  $L(C^{(m)},C^{(0)})$ $(m\geqslant0);$ $2)\ \operatorname{Ker}\bigl(\frac{d^m}{dt^m}+A\bigr)=0;$
$3)$ there exists a completely continuous operator $A_\omega\in L(C_\omega^{(m)},C_\omega^{(0)})$ $(\omega>0)$ for which 
$$
\lim_{\omega\to+\infty}\sup_{\|x\|_{C_\omega^{(m)}}=1,|t|}\|(Ax)(t)-(A_\omega x)(t)\|_E=0\qquad\forall\,T>0
$$
and 
$$
\varlimsup_{\omega\to+\infty}\inf_{\|x\|_{C_\omega^{(m)}}=1}\max_{t\in[-\frac\omega2,\frac\omega2]}\bigg\|\frac{d^mx(t)}{dt^m}+(A_\omega x)(t)\bigg\|_E>0.
$$ Then the operator $\frac{d^m}{dt^m}+A$ has a $c$-continuous inverse.}
Using this theorem the invertibility of a large class of operators is studied, which class contains in particular Poisson stable operators.
Bibliography: 22 titles.
			
            
            
            
          
        
      @article{SM_1987_58_1_a4,
     author = {V. E. Slyusarchuk},
     title = {Invertibility of nonautonomous functional-differential operators},
     journal = {Sbornik. Mathematics},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a4/}
}
                      
                      
                    V. E. Slyusarchuk. Invertibility of nonautonomous functional-differential operators. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a4/
