On Alexander duality for elliptic complexes
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 59-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary elliptic complex on a manifold $X$ the connection between the cohomology spaces of the complex on an open subset $Y\Subset X$ and the cohomology spaces of the transposed complex on the complement $X\setminus Y$ (Alexander duality) is described. Some related results about cohomology of elliptic complexes are also obtained. Bibliography: 22 titles.
@article{SM_1987_58_1_a3,
     author = {N. N. Tarkhanov},
     title = {On {Alexander} duality for elliptic complexes},
     journal = {Sbornik. Mathematics},
     pages = {59--82},
     year = {1987},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a3/}
}
TY  - JOUR
AU  - N. N. Tarkhanov
TI  - On Alexander duality for elliptic complexes
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 59
EP  - 82
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a3/
LA  - en
ID  - SM_1987_58_1_a3
ER  - 
%0 Journal Article
%A N. N. Tarkhanov
%T On Alexander duality for elliptic complexes
%J Sbornik. Mathematics
%D 1987
%P 59-82
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a3/
%G en
%F SM_1987_58_1_a3
N. N. Tarkhanov. On Alexander duality for elliptic complexes. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 59-82. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a3/

[1] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[2] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR

[3] Khavin V. P., “Prostranstva analiticheskikh funktsii”, Itogi nauki. Matematicheskii analiz. 1964, VINITI, M., 1966, 76–164

[4] Golovin V. D., “Dvoistvennost Aleksandera–Pontryagina v kompleksnom analize”, Matem. zametki, 13:4 (1973), 561–564 | MR | Zbl

[5] Grothendieck A., “Sur les espaces de solutions d'une classe generale d'equations aux derivees partielles”, J. Anal. Math., 1952–1953, no. 2, 243–280 | DOI | MR

[6] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[7] Tarhanov N. N., “Grothendieck's duality theorem for elliptic complexes”, Abstracts of Conference on analytic functions (Blazejewko, August 19–27, 1982), Univ. of Lodz, 1982, 51

[8] Schwartz L., “Espaces de fonctions differentiables a valeurs vectorielles”, J. Anal. Math. Jerusalem, 4 (1954), 88–148 | DOI | MR

[9] Tarkhanov N. N., O dvoistvennosti Puankare dlya ellipticheskikh kompleksov, Mnogomernyi kompleksnyi analiz, Izd-vo IF SO AN SSSR, Krasnoyarsk, 1985

[10] Grothendieck A., Operations algebriques sur les distributions a valeurs vectorielles. Theoreme de Künneth, Seminaire Schwartz, Faculte des Sciences de Paris, 1953–1954

[11] Atiyah M. F., Bott R. A, “Lefschetz fixed point formula for elliptic complexes. I”, Ann. Math., 86:2 (1967), 374–407 | DOI | MR | Zbl

[12] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[13] Toledo D., “On the Atiyah–Bott formula for isolated fixed points”, J. Different. Geom., 8:3 (1973), 401–436 | MR | Zbl

[14] Chirka E. M., “Potoki i nekotorye ikh primeneniya”, Kharvi R. Golomorfnye tsepi i ikh granitsy, Mir, M., 1979, 122–154 | MR

[15] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR

[16] Duff G. F., Spencer D. C., “Harmonic tensors on riemannian manifolds with boundary”, Ann. Math., 56:1 (1952), 128–156 | DOI | MR | Zbl

[17] Tarkhanov N. N., “Ob yadernom podkhode k resheniyu uravneniya $Pu=f$ dlya ellipticheskogo kompleksa $P$”, Sib. matem. zhurn., 25:4 (1984), 179–191 | MR | Zbl

[18] Andreotti A., Hill C. D., Lojasiewicz S., Mackichan M., “Complexes of differential operators. The Mayer–Victoris sequence”, Invevt. Math., 35:1 (1976), 43–86 | DOI | MR | Zbl

[19] Kon Dzh. Dzh., Nirenberg L., “Nekoertsitivnye kraevye zadachi”, Psevdodifferentsialnye operatory, Mir, M., 1967, 88–165 | MR

[20] Tarkhanov N. N., “Ob odnoi zadache Kona–Nirenberga”, Sib. matem. zhurn., 25:5 (1984), 200–203 | MR | Zbl

[21] Kerzman N., “The Bergman kernel Function. Differentiability at the boundary”, Math. Ann., 195:2 (1972), 149–158 | MR

[22] Tarhanov N. N., “On approximate properties of solutions of systems transposed to the elliptic ones”, Complex analysis and its applications to partial differential equations, Martin Lüther Universitat, 1983, 34